Law of Conservation of energy and Wnc

Click For Summary

Discussion Overview

The discussion revolves around the law of conservation of energy, particularly focusing on the role of non-conservative forces in mechanical systems. Participants explore theoretical frameworks, practical examples, and the implications of defining a "system" in physics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant asserts that the law of conservation of mechanical energy can be expressed as ΔKE + ΔPE = 0, while generalizing it to all forms of energy as ΔKE + ΔPE + [change in all other forms of energy] = 0, indicating energy conservation.
  • Another participant challenges this by stating that in a closed system with no external forces, the equation should reflect the work done by external forces rather than being equal to zero.
  • A weightlifter example is presented to illustrate a closed system where potential energy increases without a change in kinetic energy, raising questions about the role of non-conservative forces.
  • Some participants discuss the necessity of including all components of a system, such as the surface in friction scenarios, to accurately account for energy conservation.
  • There is a suggestion that dissipative processes within a closed system conserve energy, while those that cross system boundaries do not.
  • One participant expresses confusion about the definition of "a system" and its implications for energy conservation, particularly regarding dissipative forces.
  • Another participant emphasizes that energy is conserved in different forms, such as heat, rather than being lost, and provides an analogy involving electric motors converting energy types.

Areas of Agreement / Disagreement

Participants express differing views on the definitions and implications of energy conservation, particularly regarding the treatment of non-conservative forces and the definition of a closed system. No consensus is reached on these points.

Contextual Notes

Participants highlight limitations in their discussions, such as the complexity of accounting for various dissipative forces and the challenges in defining a system in different scenarios.

guyvsdcsniper
Messages
264
Reaction score
37
This is my understanding of the law of conservation of energy and the role non conservative forces factor into it. Could someone confirm if I have this right or explain where I am going wrong if I am? I would appreciate it.

With the law of conservation of mechanical energy, ΔKE+ΔPE=0. This essentially mean energy is converted from KE to PE or vice versa and the amount of energy converted should be equal. There is no energy lost. We can generalize this and turn this into the law of conservation of energy by saying ΔKE+ΔPE+[change in all other forms of energy]=0. So the change in all energy done in a system should equal zero. Because energy is conserved.

That is ideal. But in reality we have dissipative forces that cause us to loose energy from a system. We can then derive an equation to find the quantity of these dissipative force are by saying ΔKE+ΔPE=Wnc. This essentially says that the change in the mechanical energy will be equal to the work done by nonconservative forces. So this means the work done by dissipative forces will be equal to the change in mechanical energy.
 
Physics news on Phys.org
Personally I prefer your first statement "ΔKE+ΔPE+[change in all other forms of energy]=0" although it, in itself, is not entirely correct. The other side of the equation should not be zero but W, the work done by forces external to the system. But let's say you have a closed system in which there are no external forces.

Consider a weightlifter who lifts a weight over his head by stretching up from a crouching position at constant speed. The system is the weightlifter + weight + Earth, so it's closed and there are no external forces doing work. There is no change in kinetic energy, only an increase in potential energy: ##\Delta U=Mg\Delta h_{\text{cm}}+W\Delta H## where ##M## is the weightlifter's mass and ##W## the weight he is lifting. You can write that down as ##\Delta U##, but you cannot write it down as ##W_{\text{nc}}=\int \vec F_{\text{nc}}\cdot d\vec s## because you have no idea what ##\vec F_{\text{nc}}## looks like unless you have a biomechanical model that is detailed enough to sort out how the non-conservative forces are split between displacing his CM and the weight.

So you might as well leave ##\int \vec F_{\text{nc}}\cdot d\vec s## on the other side of the equation and consider it a change in the internal energy of the system. Hence my preference as stated above because it is applicable to all cases, including deformable systems. Your formulation is applicable only to cases where ##W_{\text{nc}}=\int \vec F_{\text{nc}}\cdot d\vec s_{\text{cm}}## as in, for example, a block sliding across a table and stopping because of friction. The center of mass subscript makes a difference.
 
  • Like
Likes   Reactions: guyvsdcsniper
quittingthecult said:
But in reality we have dissipative forces that cause us to loose energy from a system.
I think your confusion relates to your definition of "a system". If a sliding block dissipates energy via friction with the surface, then the surface must be included in "the system" to account for conservation of energy.

That's why physics likes to talk about a "closed system" emphasizing that nothing comes in or goes out. Dissipative processes inside the closed system conserve energy. Dissipative processes that allow energy to cross the border of the system are not closed.

So rather than question conservation of energy (which is a consequence of Noether's Theorem if you want to study more), you would be better off figuring out "where did the energy go?" That can be very difficult in some cases.
 
  • Like
Likes   Reactions: guyvsdcsniper
kuruman said:
Personally I prefer your first statement "ΔKE+ΔPE+[change in all other forms of energy]=0" although it, in itself, is not entirely correct. The other side of the equation should not be zero but W, the work done by forces external to the system. But let's say you have a closed system in which there are no external forces.

Consider a weightlifter who lifts a weight over his head by stretching up from a crouching position at constant speed. The system is the weightlifter + weight + Earth, so it's closed and there are no external forces doing work. There is no change in kinetic energy, only an increase in potential energy: ##\Delta U=Mg\Delta h_{\text{cm}}+W\Delta H## where ##M## is the weightlifter's mass and ##W## the weight he is lifting. You can write that down as ##\Delta U##, but you cannot write it down as ##W_{\text{nc}}=\int \vec F_{\text{nc}}\cdot d\vec s## because you have no idea what ##\vec F_{\text{nc}}## looks like unless you have a biomechanical model that is detailed enough to sort out how the non-conservative forces are split between displacing his CM and the weight.

So you might as well leave ##\int \vec F_{\text{nc}}\cdot d\vec s## on the other side of the equation and consider it a change in the internal energy of the system. Hence my preference as stated above because it is applicable to all cases, including deformable systems. Your formulation is applicable only to cases where ##W_{\text{nc}}=\int \vec F_{\text{nc}}\cdot d\vec s_{\text{cm}}## as in, for example, a block sliding across a table and stopping because of friction. The center of mass subscript makes a difference.

So ΔKE+ΔPE+[change in all other forms of energy]=0 should technically be ΔKE+ΔPE+[change in all other forms of energy]=Wnc to account for external forces. But that makes things difficult cause there could be so many different factors of dissipative forces that it would be hard to account for them. So therefore for closed systems ΔKE+ΔPE+[change in all other forms of energy]=0 would be ok?

But if we have a closed system we can consider Wnc the change in internal energy/thermal energy. We could really only use ΔKE+ΔPE+[change in all other forms of energy]=Wnc for simple problems like the box sliding and stopping due to friction?

Am I interpreting your response correctly?
 
anorlunda said:
I think your confusion relates to your definition of "a system". If a sliding block dissipates energy via friction with the surface, then the surface must be included in "the system" to account for conservation of energy.

That's why physics likes to talk about a "closed system" emphasizing that nothing comes in or goes out. Dissipative processes inside the closed system conserve energy. Dissipative processes that allow energy to cross the border of the system are not closed.

So rather than question conservation of energy (which is a consequence of Noether's Theorem if you want to study more), you would be better off figuring out "where did the energy go?" That can be very difficult in some cases.
Ok so in a closed system energy is just conserved into another form like heat. That doesn't mean the energy was lost but it is now in a different form. is that correct?
 
quittingthecult said:
Am I interpreting your response correctly?
Perhaps you might wish to read this insight to see where I am coming from regarding ##W_{\text{nc}}##.
 
Last edited:
kuruman said:
Perhaps you might wish to read https://www.physicsforums.com/insights/is-mechanical-energy-conservation-free-of-ambiguity/?preview_id=26278&preview_nonce=2d38f097b9&post_format=standard&_thumbnail_id=28730&preview=true to see where I am coming from regarding ##W_{\text{nc}}##.
It says I am not allowed to preview drafts
 
quittingthecult said:
Ok so in a closed system energy is just conserved into another form like heat. That doesn't mean the energy was lost but it is now in a different form. is that correct?
Yes. Energy is conserved, not a particular kind of energy. Think of an electric motor. It's purpose is to convert electric energy to mechanical energy.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 77 ·
3
Replies
77
Views
6K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K