Left/Right Multiplication Maps on Algebras .... Bresar

  • Context: Undergrad 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Multiplication
Click For Summary
SUMMARY

This discussion centers on the proof of Lemma 1.24 from Matej Bresar's "Introduction to Noncommutative Algebra," specifically regarding finite dimensional division algebras. The participants seek clarification on the implications of the ideal generated by an element \( b_n \) being equal to the algebra \( A \), and how this leads to the conclusion that \( \sum_{j=1}^{m} w_j b_n z_j = 1 \) for some \( w_j, z_j \in A \). Additionally, they inquire about the equivalence of certain summations involving left and right multiplication operators, \( L_{a_i} \) and \( R_{b_i} \), and their relationship to the zero element in the algebra.

PREREQUISITES
  • Understanding of finite dimensional division algebras
  • Familiarity with the concept of ideals in algebra
  • Knowledge of left and right multiplication operators
  • Basic comprehension of algebraic summation and notation
NEXT STEPS
  • Study the properties of ideals in noncommutative algebras
  • Explore the implications of simple algebras on ideal generation
  • Learn about left and right multiplication in the context of algebraic structures
  • Investigate the proofs and applications of Lemma 1.24 in Bresar's text
USEFUL FOR

Mathematicians, algebraists, and students studying noncommutative algebra, particularly those interested in the structure and properties of finite dimensional division algebras.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Matej Bresar's book, "Introduction to Noncommutative Algebra" and am currently focussed on Chapter 1: Finite Dimensional Division Algebras ... ...

I need help with the proof of Lemma 1.24 ...

Lemma 1.24 reads as follows:
?temp_hash=695688f2306bf2924c46d39e19428801.png


My questions regarding the proof of Lemma 1.24 are as follows ... ...Question 1

In the above proof by Bresar, we read:

" ... ... Since ##A## is simple, the ideal generated by ##b_n## is equal to ##A##.

That is ##\sum_{ j = 1 }^m w_j b_n z_j = 1## for some ##w_j , z_J \in A##. ... ... "My question is ... ... how/why does the fact that the ideal generated by ##b_n## being equal to ##A## ...

imply that ... ##\sum_{ j = 1 }^m w_j b_n z_j = 1## for some ##w_j , z_J \in A## ...?

Question 2In the above proof by Bresar, we read:" ... ##0 = \sum_{ j = 1 }^m R_{ z_j } \ ( \sum_{ i = 1 }^n L_{ a_i } R_{ b_i } ) \ R_{ w_j }####= \sum_{ i = 1 }^n L_{ a_i } \ ( \sum_{ j = 1 }^m R_{ w_j b_i z_j } )####= \sum_{ i = 1 }^n L_{ a_i } R_{ c_i }##... ... "
My questions are

(a) can someone help me to understand how##\sum_{ j = 1 }^m R_{ z_j } \ ( \sum_{ i = 1 }^n L_{ a_i } R_{ b_i } ) \ R_{ w_j }####= \sum_{ i = 1 }^n L_{ a_i } \ ( \sum_{ j = 1 }^m R_{ w_j b_i z_j } ) ##
(b) can someone help me to understand how##\sum_{ i = 1 }^n L_{ a_i } \ ( \sum_{ j = 1 }^m R_{ w_j b_i z_j } ) ####= \sum_{ i = 1 }^n L_{ a_i } R_{ c_i }##

Help will be appreciated ...

Peter

=========================================================================

*** NOTE ***So that readers of the above post will be able to understand the context and notation of the post ... I am providing Bresar's first two pages on Multiplication Algebras ... ... as follows:
?temp_hash=695688f2306bf2924c46d39e19428801.png

?temp_hash=695688f2306bf2924c46d39e19428801.png
 

Attachments

  • Bresar - Lemma 1.24 ... ....png
    Bresar - Lemma 1.24 ... ....png
    85.9 KB · Views: 744
  • Bresar - 1 - Section 1.5 Multiplication Algebra - PART 1 ... ....png
    Bresar - 1 - Section 1.5 Multiplication Algebra - PART 1 ... ....png
    27.6 KB · Views: 693
  • Bresar - 2 - Section 1.5 Multiplication Algebra - PART 2 ... ....png
    Bresar - 2 - Section 1.5 Multiplication Algebra - PART 2 ... ....png
    29.5 KB · Views: 716
Last edited:
Physics news on Phys.org
Q1:
What does it mean to be an ideal ##I## of ##A##?
For a (two-sided!) ideal, it has to hold, that ##A\cdot I \subseteq I## and ##I\cdot A \subseteq I##. Since ##b_n \in I##, we need to have all left and right multiples to also be in ##I##. So all elements of the form ##w_jb_nz_j## are together with ##b_n## also elements of ##I##.
Furthermore an ideal is closed under addition, so all summations of elements of ##I## are again in ##I##, esp. any sum ##\sum_{j=1}^{m} w_jb_nz_j##. This is simultaneously the most general form of any element of ##I = <b_n> = A\cdot I \cdot A##.

Q2:
We have ##\sum_{i=1}^{n} L_{a_i}R_{b_i} = 0 \; (^*) \;## by assumption.
Then let us define ##\sum_{j=1}^{m} w_jb_iz_j =: c_i \; (^{**}) \;##, simply as an abbreviation for these sums ##c_1, \ldots , c_n##.
Because all sums are finite, we won't have to bother any order of summation.
At last let us assume we have an arbitrary element ##x \in A##.

Now calculate ##\left( \sum_{j=1}^{m} R_{z_j} \left( \sum_{i=1}^{n} L_{a_i}R_{b_i} \right) R_{w_j} \right)(x)## by using ##(^*)## and ##(^{**})##.
 
  • Like
Likes   Reactions: Math Amateur
Thanks again for your assistance, fresh_42 ...

Most helpful ...

Peter
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K