Legendre Second Kind: $Q_n(x)$ Functions

jije1112
Messages
9
Reaction score
0
Legendre functions $Q_n(x)$ of the second kind
\begin{equation*}
Q_n(x)=P_n(x) \int \frac{1}{(1-x^2)\cdot P_n^2(x)}\, \mathrm{d}x
\end{equation*}
what to do after this step?
how can I complete ?
I need to reach this formula
\begin{equation*}
Q_n(x)=\frac{1}{2} P_n(x)\ln\left( \frac{ 1+x}{1-x}\right)
\end{equation*}
 
Physics news on Phys.org
If that were true then, setting the two forms for Q_(x) equal, it would have to be true that
\int \frac{1}{(1- x^2)P^2_n(x)}dx= \frac{1}{2}ln\left(\frac{1+ x}{1- x}\right)

Is that true? I suggest you check your formulas.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K