Amr Elsayed said:
[..]
do you mean it's time to travel from back to front and return ?? If so. this doesn't tell that C is constant from both directions.
Instead - and it seemed as if you understood that! - the clock synchronization procedure
makes the measured speed the same in both directions. By definition. As I put it:
The train observer next sets the time of the front clock by sending a light signal from rear to front; he sets the front clock to read 1s more at reception than the rear clock was at the time of sending. You correctly did so in post
#21 - so now I'm puzzled at why you don't understand it next. Could it be that a concept that is clear to you from a signal in the middle, is unclear with a signal from one end? It's the same concept, only a slightly different procedure.
If so, you should perhaps try the calculation with a light signal from the middle, as you did in post #21...
As a reminder, you wrote:
"The 2 guys on the train agree to set their clocks on 5 when they receive the laser. For them, both clocks are on time " pointing to same time" since C must have same speed and it was same distance so it will arrive to both guys at same time from their perspective."
But you seem to have again completely forgotten that, as now you wrote:
" this doesn't tell that C is constant from both directions."
Indeed, length contraction and time dilation are irrelevant for that, as we told you many times - and as you even understood in your post 21. Length contraction and time dilation tell us what he will find for the total time for light to make a round trip. That should be 2 seconds and it is 2 seconds as you saw. Next, clock synchronization takes care of the one-way speed of light, just as you understood in post 21.
It tells that the average velocity is C. You could get velocity for each direction if you calculated the exact distance covered by C. instead of getting the velocity of light that I think the observer on train will measure another thing, since the observer who measures is on train.
Once more: if he divides, as he must do, 2 seconds by 2, he can only find 1 second for the time each way because he assumes for his clock synchronization that the speed of light is the same in both directions. He can then only find 300000 km /1 s for one way, and 300000 km / 1s for the other way. Because it is 6000000 km / 2s both ways and he sets the clock so as to make the speed of light the same in both directions..
he will doesn't take difference in clocks into account since he sees them synchronized

That
is the synchronization according to him! The whole point is that he assumes that he is in rest, and so he uses the method of §1 of
http://fourmilab.ch/etexts/einstein/specrel/www/
One last time: he simply follows the procedure of §1: "we establish
by definition that the “time” required by light to travel from A to B equals the “time” it requires to travel from B to A."