MHB Lengths of the sides of quadrilateral

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The lengths of the sides of a quadrilateral are positive integers. The length of each side divides the sum of the other three lengths. Prove that two of the sides have the same length.
 
Mathematics news on Phys.org
If the quadrilateral has sides $a,b,c,d$ and perimeter $s = a+b+c+d$ then $a < b+c+d$. Also, $a$ divides $b+c+d$, so $b+c+d$ is at least twice $a$. But $b+c+d = s-a$, so $a$ also divides $s$, and $s$ must be at least $3$ times $a$, say $s=ka$ with $k\geqslant3$. Similarly, $s = lb$, $s=mc$ and $s=nd$, with all of $l,m,n$ greater than or equal to $3$.

Then $a = \dfrac1ks$, $b = \dfrac1ls$, $c = \dfrac1ms$, $d = \dfrac1ns$. Therefore $s = a+b+c+d = \dfrac1ks + \dfrac1ls + \dfrac1ms + \dfrac1ns$ and so $$\frac1k + \frac1l + \frac1m + \frac1n = 1.$$ But under the given conditions, if $a,b,c,d$ are all different then so are $k,l,m,n$, and the largest possible value for $\dfrac1k + \dfrac1l + \dfrac1m + \dfrac1n$ is $\dfrac13 +\dfrac14 + \dfrac15 + \dfrac16 = \dfrac{57}{60}$, which is less than $1$. So those conditions cannot be satisfied and therefore at least two of the four sides must have the same length.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
4
Views
2K
Replies
38
Views
4K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
30
Views
5K
Replies
6
Views
1K
Replies
1
Views
1K
Back
Top