Levi civita symbol and kronecker delta identities in 4 dimensions

Click For Summary
SUMMARY

The discussion focuses on the identity involving the Levi-Civita symbol and the Kronecker delta in four dimensions, specifically demonstrating that ε^{0 i j k} ε_{0 i j l} = -2 δ^k_l. The participants explore the derivation of this identity using explicit tensor notation and properties of the Levi-Civita symbol. They clarify the conventions used for the Levi-Civita symbols, noting that ε^{α β γ δ} = -ε_{α β γ δ}, which is crucial for understanding the signs in the final expression.

PREREQUISITES
  • Understanding of Levi-Civita symbols and their properties
  • Familiarity with Kronecker delta notation and its applications
  • Basic knowledge of tensor calculus and index notation
  • Concepts of covariance and contravariance in tensor analysis
NEXT STEPS
  • Study the properties of the Levi-Civita symbol in higher dimensions
  • Learn about tensor contraction and its implications in physics
  • Explore the relationship between Levi-Civita symbols and determinants
  • Investigate the role of Kronecker deltas in tensor equations
USEFUL FOR

This discussion is beneficial for physicists, mathematicians, and students engaged in advanced studies of tensor analysis, particularly those working with differential geometry or theoretical physics.

Emil
Messages
8
Reaction score
0
I'm trying to explicitly show that

\varepsilon^{0 i j k} \varepsilon_{0 i j l} = - 2 \delta^k_l

I sort of went off the deep end and tried to express everything instead of using snazzy tricks and ended up with

<br /> \begin{eqnarray*}<br /> \delta^{\mu \rho}_{\nu \sigma} &amp; = &amp; \delta^{\mu}_{\nu}<br /> \delta^{\rho}_{\sigma} - \delta^{\mu}_{\sigma} \delta^{\rho}_{\nu}\\<br /> &amp; &amp; \\<br /> \delta^{\mu \rho_1 \rho_2}_{\nu \sigma_1 \sigma_2} &amp; = &amp; \delta^{\mu}_{\nu}<br /> \delta^{\rho_1 \rho_2}_{\sigma_1 \sigma_2} - \delta^{\mu}_{\sigma_1}<br /> \delta^{\rho_1 \rho_2}_{\nu \sigma_2} + \delta^{\mu}_{\sigma_1}<br /> \delta^{\rho_1 \rho_2}_{\sigma_2 \nu}\\<br /> &amp; &amp; \\<br /> \delta^{\mu \rho_1 \rho_2 \rho_3}_{\nu \sigma_1 \sigma_2 \sigma_3} &amp; = &amp;<br /> \delta^{\mu}_{\nu} \delta^{\rho_1 \rho_2 \rho_3}_{\sigma_1 \sigma_2<br /> \sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2 \rho_3}_{\nu<br /> \sigma_2 \sigma_3} + \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2<br /> \rho_3}_{\sigma_2 \nu \sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1<br /> \rho_2 \rho_3}_{\sigma_2 \sigma_3 \nu}\\<br /> &amp; &amp; \\<br /> \varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} &amp; =<br /> &amp; \delta^0_0 \delta^{i j k}_{i j l} - \delta^0_i \delta^{i j k}_{0 j l} +<br /> \delta^0_i \delta^{i j k}_{j 0 l} - \delta^0_i \delta^{i j k}_{j l 0}\\<br /> &amp; &amp; \\<br /> &amp; = &amp; \delta^0_0 \left( \delta^i_i \delta^{j k}_{j l} - \delta^i_j<br /> \delta^{j k}_{i l} + \delta^i_i \delta^{j k}_{l j} \right) \ldots\\<br /> &amp; &amp; - \delta^0_i \left( \delta^i_0 \delta^{j k}_{j l} - \delta^i_j<br /> \delta^{j k}_{0 l} + \delta^0_j \delta^{j k}_{l 0} \right) \ldots\\<br /> &amp; &amp; + \delta^0_i \left( \delta^i_j \delta^{j k}_{0 l} - \delta^i_0<br /> \delta^{j k}_{j l} + \delta^0_0 \delta^{j k}_{l j} \right) \ldots\\<br /> &amp; &amp; - \delta^0_i \left( \delta^i_j \delta^{j k}_{l 0} - \delta^i_l<br /> \delta^{j k}_{j 0} + \delta^0_l \delta^{j k}_{0 j} \right)\\<br /> &amp; &amp; \\<br /> &amp; = &amp; \delta^0_0 \left( \delta^i_i \left( \delta^j_j \delta^k_l -<br /> \delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_i \delta^k_l -<br /> \delta^j_l \delta^k_i \right) + \delta^i_i \left( \delta^j_l \delta^k_j -<br /> \delta^j_j \delta^k_l \right) \right) \ldots\\<br /> &amp; &amp; - \delta^0_i \left( \delta^i_0 \left( \delta^j_j \delta^k_l -<br /> \delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_0 \delta^k_l -<br /> \delta^j_l \delta^k_0 \right) + \delta^0_j \left( \delta^j_l \delta^k_0 -<br /> \delta^j_0 \delta^k_l \right) \right) \ldots\\<br /> &amp; &amp; + \delta^0_i \left( \delta^i_j \left( \delta^j_0 \delta^k_l -<br /> \delta^j_l \delta^k_0 \right) - \delta^i_0 \left( \delta^j_j \delta^k_l -<br /> \delta^j_l \delta^k_j \right) + \delta^0_0 \left( \delta^j_l \delta^k_j -<br /> \delta^j_j \delta^k_l \right) \right) \ldots\\<br /> &amp; &amp; - \delta^0_i \left( \delta^i_j \left( \delta^j_l \delta^k_0 -<br /> \delta^j_0 \delta^k_l \right) - \delta^i_l \left( \delta^j_j \delta^k_0 -<br /> \delta^j_0 \delta^k_j \right) + \delta^0_l \left( \delta^j_0 \delta^k_j -<br /> \delta^j_j \delta^k_0 \right) \right)\\<br /> &amp; &amp; \\<br /> &amp; &amp; 0 = i = j\\<br /> &amp; &amp; \\<br /> &amp; = &amp; \delta^0_0 \delta^i_i \delta^j_j \delta^k_l - \delta^0_0 \delta^i_j<br /> \delta^j_i \delta^k_l - \delta^0_0 \delta^i_i \delta^j_j \delta^k_l \ldots\\<br /> &amp; &amp; - \delta^0_i \delta^i_0 \delta^j_j \delta^k_l + \delta^0_i \delta^i_j<br /> \delta^j_0 \delta^k_l + \delta^0_i \delta^0_j \delta^j_0 \delta^k_l \ldots\\<br /> &amp; &amp; + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l - \delta^0_i \delta^i_0<br /> \delta^j_j \delta^k_l - \delta^0_0 \delta^j_j \delta^k_l \ldots\\<br /> &amp; &amp; + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l\\<br /> &amp; &amp; \\<br /> &amp; = &amp; \delta^k_l - \delta^k_l\\<br /> \end{eqnarray*} <br />

The bottom line is that all I want for christmas is to get - 2 \delta^k_l from

\varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} =<br /> \left|\begin{array}{cccc}<br /> \delta^0_0 &amp; \delta^0_i &amp; \delta^0_j &amp; \delta^0_l\\<br /> \delta^i_0 &amp; \delta^i_i &amp; \delta^i_j &amp; \delta^i_l\\<br /> \delta^j_0 &amp; \delta^j_i &amp; \delta^j_j &amp; \delta^j_l\\<br /> \delta^k_0 &amp; \delta^k_i &amp; \delta^k_j &amp; \delta^k_l<br /> \end{array}\right| =

in a way that doesn't involve 100000 kronecker deltas. THAAAAANKS :smile:
 
Physics news on Phys.org
The formula doesn't hold if k=l=0.

I have never tried to brute-force this sort of thing. It's so much easier to make observations that simplify the problem. Let k be an arbitrary element of {1,2,3}. ##\varepsilon^{0 i j k} \varepsilon_{0 i j l}## is a sum with 4×4=16 terms, but most of them are zero. Clearly all terms with i=j, all terms with i=0 or j=0, and all terms with i=k or j=k, are zero. This only leaves two terms!

Let a,b be the two elements of {1,2,3} that aren't equal to k. The only terms that we haven't proved are zero are (no summation) ##\varepsilon^{0 a b k}\varepsilon_{0 a b l}## and ##\varepsilon^{0 b a k}\varepsilon_{0 b a l}##. If ##l\neq k##, then ##l\in\{a,b\}##, and both terms are zero. If ##l=k##, then one of the terms is 1×1=1, and the other is (-1)×(-1)=1.

Hm, I didn't get a minus sign. I'm guessing that your convention isn't that ##\varepsilon^{0123}## and ##\varepsilon_{0123}## are both 1. One of them is defined to be -1, right?
 
Not understanding how contra/covariance comes in, and what to sum over

Thanks for the quick reply!

I know that the convention in use is $$\varepsilon^{\alpha \beta \gamma \delta}
= - \varepsilon_{\alpha \beta \gamma \delta}$$ I'm not quite comfortable on how it produces the minus signs.
Does one of the terms become $$\varepsilon^{0
a b k} \varepsilon_{0 a b l} = \left( - 1 \right) \left( 1 \right) = -
1$$ and the other $$\varepsilon^{0 b a k} \varepsilon_{0 b a l} = \left( 1
\right) \left( - 1 \right) = - 1$$ If so, why explicitly? Then I want
to sum the two and stick a kronecker delta.

I'm shooting in the dark here but I think I need an equation explicitly written out to understand. I want to write
$$\varepsilon^{0 i j k} \varepsilon_{0 i j l} =EinsteinSummation?OverWhat?= \varepsilon^{0 a b
k} \varepsilon_{0 a b l} + \varepsilon^{0 b a k} \varepsilon_{0 b a l} =
\left( - 1 \right) \left( 1 \right) + \left( 1 \right)
\left( - 1 \right) = - 2 $$
for all $$k = l$$ i.e. $$\varepsilon^{0 i j k} \varepsilon_{0 i j l} = - 2
\delta^k_l$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
5
Views
7K
Replies
27
Views
17K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
3
Views
12K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K