- #1
- 8
- 0
I'm trying to explicitly show that
[tex]\varepsilon^{0 i j k} \varepsilon_{0 i j l} = - 2 \delta^k_l[/tex]
I sort of went off the deep end and tried to express everything instead of using snazzy tricks and ended up with
[tex]
\begin{eqnarray*}
\delta^{\mu \rho}_{\nu \sigma} & = & \delta^{\mu}_{\nu}
\delta^{\rho}_{\sigma} - \delta^{\mu}_{\sigma} \delta^{\rho}_{\nu}\\
& & \\
\delta^{\mu \rho_1 \rho_2}_{\nu \sigma_1 \sigma_2} & = & \delta^{\mu}_{\nu}
\delta^{\rho_1 \rho_2}_{\sigma_1 \sigma_2} - \delta^{\mu}_{\sigma_1}
\delta^{\rho_1 \rho_2}_{\nu \sigma_2} + \delta^{\mu}_{\sigma_1}
\delta^{\rho_1 \rho_2}_{\sigma_2 \nu}\\
& & \\
\delta^{\mu \rho_1 \rho_2 \rho_3}_{\nu \sigma_1 \sigma_2 \sigma_3} & = &
\delta^{\mu}_{\nu} \delta^{\rho_1 \rho_2 \rho_3}_{\sigma_1 \sigma_2
\sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2 \rho_3}_{\nu
\sigma_2 \sigma_3} + \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2
\rho_3}_{\sigma_2 \nu \sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1
\rho_2 \rho_3}_{\sigma_2 \sigma_3 \nu}\\
& & \\
\varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} & =
& \delta^0_0 \delta^{i j k}_{i j l} - \delta^0_i \delta^{i j k}_{0 j l} +
\delta^0_i \delta^{i j k}_{j 0 l} - \delta^0_i \delta^{i j k}_{j l 0}\\
& & \\
& = & \delta^0_0 \left( \delta^i_i \delta^{j k}_{j l} - \delta^i_j
\delta^{j k}_{i l} + \delta^i_i \delta^{j k}_{l j} \right) \ldots\\
& & - \delta^0_i \left( \delta^i_0 \delta^{j k}_{j l} - \delta^i_j
\delta^{j k}_{0 l} + \delta^0_j \delta^{j k}_{l 0} \right) \ldots\\
& & + \delta^0_i \left( \delta^i_j \delta^{j k}_{0 l} - \delta^i_0
\delta^{j k}_{j l} + \delta^0_0 \delta^{j k}_{l j} \right) \ldots\\
& & - \delta^0_i \left( \delta^i_j \delta^{j k}_{l 0} - \delta^i_l
\delta^{j k}_{j 0} + \delta^0_l \delta^{j k}_{0 j} \right)\\
& & \\
& = & \delta^0_0 \left( \delta^i_i \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_i \delta^k_l -
\delta^j_l \delta^k_i \right) + \delta^i_i \left( \delta^j_l \delta^k_j -
\delta^j_j \delta^k_l \right) \right) \ldots\\
& & - \delta^0_i \left( \delta^i_0 \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_0 \delta^k_l -
\delta^j_l \delta^k_0 \right) + \delta^0_j \left( \delta^j_l \delta^k_0 -
\delta^j_0 \delta^k_l \right) \right) \ldots\\
& & + \delta^0_i \left( \delta^i_j \left( \delta^j_0 \delta^k_l -
\delta^j_l \delta^k_0 \right) - \delta^i_0 \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) + \delta^0_0 \left( \delta^j_l \delta^k_j -
\delta^j_j \delta^k_l \right) \right) \ldots\\
& & - \delta^0_i \left( \delta^i_j \left( \delta^j_l \delta^k_0 -
\delta^j_0 \delta^k_l \right) - \delta^i_l \left( \delta^j_j \delta^k_0 -
\delta^j_0 \delta^k_j \right) + \delta^0_l \left( \delta^j_0 \delta^k_j -
\delta^j_j \delta^k_0 \right) \right)\\
& & \\
& & 0 = i = j\\
& & \\
& = & \delta^0_0 \delta^i_i \delta^j_j \delta^k_l - \delta^0_0 \delta^i_j
\delta^j_i \delta^k_l - \delta^0_0 \delta^i_i \delta^j_j \delta^k_l \ldots\\
& & - \delta^0_i \delta^i_0 \delta^j_j \delta^k_l + \delta^0_i \delta^i_j
\delta^j_0 \delta^k_l + \delta^0_i \delta^0_j \delta^j_0 \delta^k_l \ldots\\
& & + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l - \delta^0_i \delta^i_0
\delta^j_j \delta^k_l - \delta^0_0 \delta^j_j \delta^k_l \ldots\\
& & + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l\\
& & \\
& = & \delta^k_l - \delta^k_l\\
\end{eqnarray*}
[/tex]
The bottom line is that all I want for christmas is to get [tex]- 2 \delta^k_l[/tex] from
[tex] \varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} =
\left|\begin{array}{cccc}
\delta^0_0 & \delta^0_i & \delta^0_j & \delta^0_l\\
\delta^i_0 & \delta^i_i & \delta^i_j & \delta^i_l\\
\delta^j_0 & \delta^j_i & \delta^j_j & \delta^j_l\\
\delta^k_0 & \delta^k_i & \delta^k_j & \delta^k_l
\end{array}\right| = [/tex]
in a way that doesn't involve 100000 kronecker deltas. THAAAAANKS :rofl:
[tex]\varepsilon^{0 i j k} \varepsilon_{0 i j l} = - 2 \delta^k_l[/tex]
I sort of went off the deep end and tried to express everything instead of using snazzy tricks and ended up with
[tex]
\begin{eqnarray*}
\delta^{\mu \rho}_{\nu \sigma} & = & \delta^{\mu}_{\nu}
\delta^{\rho}_{\sigma} - \delta^{\mu}_{\sigma} \delta^{\rho}_{\nu}\\
& & \\
\delta^{\mu \rho_1 \rho_2}_{\nu \sigma_1 \sigma_2} & = & \delta^{\mu}_{\nu}
\delta^{\rho_1 \rho_2}_{\sigma_1 \sigma_2} - \delta^{\mu}_{\sigma_1}
\delta^{\rho_1 \rho_2}_{\nu \sigma_2} + \delta^{\mu}_{\sigma_1}
\delta^{\rho_1 \rho_2}_{\sigma_2 \nu}\\
& & \\
\delta^{\mu \rho_1 \rho_2 \rho_3}_{\nu \sigma_1 \sigma_2 \sigma_3} & = &
\delta^{\mu}_{\nu} \delta^{\rho_1 \rho_2 \rho_3}_{\sigma_1 \sigma_2
\sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2 \rho_3}_{\nu
\sigma_2 \sigma_3} + \delta^{\mu}_{\sigma_1} \delta^{\rho_1 \rho_2
\rho_3}_{\sigma_2 \nu \sigma_3} - \delta^{\mu}_{\sigma_1} \delta^{\rho_1
\rho_2 \rho_3}_{\sigma_2 \sigma_3 \nu}\\
& & \\
\varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} & =
& \delta^0_0 \delta^{i j k}_{i j l} - \delta^0_i \delta^{i j k}_{0 j l} +
\delta^0_i \delta^{i j k}_{j 0 l} - \delta^0_i \delta^{i j k}_{j l 0}\\
& & \\
& = & \delta^0_0 \left( \delta^i_i \delta^{j k}_{j l} - \delta^i_j
\delta^{j k}_{i l} + \delta^i_i \delta^{j k}_{l j} \right) \ldots\\
& & - \delta^0_i \left( \delta^i_0 \delta^{j k}_{j l} - \delta^i_j
\delta^{j k}_{0 l} + \delta^0_j \delta^{j k}_{l 0} \right) \ldots\\
& & + \delta^0_i \left( \delta^i_j \delta^{j k}_{0 l} - \delta^i_0
\delta^{j k}_{j l} + \delta^0_0 \delta^{j k}_{l j} \right) \ldots\\
& & - \delta^0_i \left( \delta^i_j \delta^{j k}_{l 0} - \delta^i_l
\delta^{j k}_{j 0} + \delta^0_l \delta^{j k}_{0 j} \right)\\
& & \\
& = & \delta^0_0 \left( \delta^i_i \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_i \delta^k_l -
\delta^j_l \delta^k_i \right) + \delta^i_i \left( \delta^j_l \delta^k_j -
\delta^j_j \delta^k_l \right) \right) \ldots\\
& & - \delta^0_i \left( \delta^i_0 \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) - \delta^i_j \left( \delta^j_0 \delta^k_l -
\delta^j_l \delta^k_0 \right) + \delta^0_j \left( \delta^j_l \delta^k_0 -
\delta^j_0 \delta^k_l \right) \right) \ldots\\
& & + \delta^0_i \left( \delta^i_j \left( \delta^j_0 \delta^k_l -
\delta^j_l \delta^k_0 \right) - \delta^i_0 \left( \delta^j_j \delta^k_l -
\delta^j_l \delta^k_j \right) + \delta^0_0 \left( \delta^j_l \delta^k_j -
\delta^j_j \delta^k_l \right) \right) \ldots\\
& & - \delta^0_i \left( \delta^i_j \left( \delta^j_l \delta^k_0 -
\delta^j_0 \delta^k_l \right) - \delta^i_l \left( \delta^j_j \delta^k_0 -
\delta^j_0 \delta^k_j \right) + \delta^0_l \left( \delta^j_0 \delta^k_j -
\delta^j_j \delta^k_0 \right) \right)\\
& & \\
& & 0 = i = j\\
& & \\
& = & \delta^0_0 \delta^i_i \delta^j_j \delta^k_l - \delta^0_0 \delta^i_j
\delta^j_i \delta^k_l - \delta^0_0 \delta^i_i \delta^j_j \delta^k_l \ldots\\
& & - \delta^0_i \delta^i_0 \delta^j_j \delta^k_l + \delta^0_i \delta^i_j
\delta^j_0 \delta^k_l + \delta^0_i \delta^0_j \delta^j_0 \delta^k_l \ldots\\
& & + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l - \delta^0_i \delta^i_0
\delta^j_j \delta^k_l - \delta^0_0 \delta^j_j \delta^k_l \ldots\\
& & + \delta^0_i \delta^i_j \delta^j_0 \delta^k_l\\
& & \\
& = & \delta^k_l - \delta^k_l\\
\end{eqnarray*}
[/tex]
The bottom line is that all I want for christmas is to get [tex]- 2 \delta^k_l[/tex] from
[tex] \varepsilon^{0 i j k} \varepsilon_{0 i j l} = \delta^{0 i j k}_{0 i j l} =
\left|\begin{array}{cccc}
\delta^0_0 & \delta^0_i & \delta^0_j & \delta^0_l\\
\delta^i_0 & \delta^i_i & \delta^i_j & \delta^i_l\\
\delta^j_0 & \delta^j_i & \delta^j_j & \delta^j_l\\
\delta^k_0 & \delta^k_i & \delta^k_j & \delta^k_l
\end{array}\right| = [/tex]
in a way that doesn't involve 100000 kronecker deltas. THAAAAANKS :rofl: