MHB L'Hopital's Rule _ Statement of Theorem (Houshang H. Sohrab)

Click For Summary
Sohrab's statement of Theorem 6.5.1 in his book on real analysis raises a question regarding the use of limits as x approaches a finite point a, particularly when functions f and g are defined only on the interval (a, b). The confusion arises from the remark that states "lim x to a = lim x to a+" despite the functions not being defined at a. One participant clarifies that it is acceptable to write lim x to a, interpreting it as lim x to a+ for functions not defined at a. The discussion also notes that for limits approaching negative infinity, the interpretation must be adjusted accordingly. Overall, the conversation emphasizes the nuances in limit notation in relation to function definitions.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Houshang H. Sohrab's book: Basic Real Analysis (Second Edition).

I need help with an aspect of Sohrab's statement of Theorem 6.5.1 (L'Hopital's Rule) on pages 262-263. Sohrab's statement of Theorem 6.5.1 reads as follows:
View attachment 3935
https://www.physicsforums.com/attachments/3936
At the conclusion of the statement of the theorem, Sohrab writes:" ... ... Note that, for finite a, we obviously have $$\lim{x \to a} = \lim{x \to a+}$$ ... ... "I do not understand this remark.

Surely since $$f, g$$ are defined on $$(a, b)$$ the whole statement of the Theorem should be in terms of limits of the form $$\lim{x \to a+}$$ ... indeed for a function defined on $$(a,b)$$ it does not seem right to me to talk about limits of the form $$ \lim{x \to a}$$?

Can someone please clarify this issue for me?

Peter
 
Physics news on Phys.org
Peter said:
I am reading Houshang H. Sohrab's book: Basic Real Analysis (Second Edition).

I need help with an aspect of Sohrab's statement of Theorem 6.5.1 (L'Hopital's Rule) on pages 262-263. Sohrab's statement of Theorem 6.5.1 reads as follows:At the conclusion of the statement of the theorem, Sohrab writes:" ... ... Note that, for finite a, we obviously have $$\lim{x \to a} = \lim{x \to a+}$$ ... ... "I do not understand this remark.

Surely since $$f, g$$ are defined on $$(a, b)$$ the whole statement of the Theorem should be in terms of limits of the form $$\lim{x \to a+}$$ ... indeed for a function defined on $$(a,b)$$ it does not seem right to me to talk about limits of the form $$ \lim{x \to a}$$?

Can someone please clarify this issue for me?

Peter
I think it is perfectly alright to write $\lim_{x\to a}$ even though the function is not defined on the left of $a$ (and on $a$).
It will just be intepretted as $\lim_{x\to a^+}$.
The remark by Sohrab is there, I guess, because it doesn't mean anything to write $\lim_{x\to -\infty+}$. So when $a=-\infty$, $\lim_{x\to a}$ has to be interpretted as $\lim_{x\to -\infty}$ and not, of course, as $\lim_{x\to -\infty+}$.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K