L'Hopital's Rule case: How does x^(-4/3) equal 0 when x approches infinity?

Mohmmad Maaitah
Messages
90
Reaction score
20
Homework Statement
How is this 0/0 so we can use L'Hopital's Rule?
Relevant Equations
L'Hopital's Rule
I'm talking about the x^(-4/3) how does it equal 0 when x approch infinite??
so I can use

L'Hopital's Rule

1683875873476.png
 

Attachments

  • 1683875928800.png
    1683875928800.png
    7.3 KB · Views: 114
  • 1683875935945.png
    1683875935945.png
    7.3 KB · Views: 123
Physics news on Phys.org
$$x^{\frac{4}{3}}\rightarrow +\infty$$
so its inverse
$$x^{-\frac{4}{3}}\rightarrow +0$$
 
  • Like
Likes scottdave, PhDeezNutz, Mohmmad Maaitah and 1 other person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top