L'Hopital's Rule case: How does x^(-4/3) equal 0 when x approches infinity?

Mohmmad Maaitah
Messages
90
Reaction score
20
Homework Statement
How is this 0/0 so we can use L'Hopital's Rule?
Relevant Equations
L'Hopital's Rule
I'm talking about the x^(-4/3) how does it equal 0 when x approch infinite??
so I can use

L'Hopital's Rule

1683875873476.png
 

Attachments

  • 1683875928800.png
    1683875928800.png
    7.3 KB · Views: 117
  • 1683875935945.png
    1683875935945.png
    7.3 KB · Views: 125
Physics news on Phys.org
$$x^{\frac{4}{3}}\rightarrow +\infty$$
so its inverse
$$x^{-\frac{4}{3}}\rightarrow +0$$
 
  • Like
Likes scottdave, PhDeezNutz, Mohmmad Maaitah and 1 other person
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top