Light Heavy and Semiheavy Water Equilibrium

  • Thread starter Thread starter Vanadium 50
  • Start date Start date
  • Tags Tags
    Light
AI Thread Summary
The discussion centers on the kinetics of hydrogen-deuterium exchange in a mixture of H2O and D2O, specifically how long it takes to reach equilibrium. It is established that in a liquid phase at room temperature, the exchange occurs rapidly, potentially in the nanosecond range, similar to acid-base reactions. The complexity of the equilibrium involving H2O, HDO, D2O, and associated ions complicates precise calculations, but a rough estimate suggests the process is very fast, occurring as quickly as mechanical mixing can occur. The presence of H+ from water autodissociation enhances the exchange rate, as it facilitates bond oscillations and charge delocalization among water molecules, leading to a swift rearrangement of hydrogen and deuterium atoms. Overall, the consensus is that the exchange process is extremely quick, emphasizing the interconnected nature of water molecules in the liquid state.
Vanadium 50
Staff Emeritus
Science Advisor
Education Advisor
Gold Member
Messages
35,003
Reaction score
21,702
If I start with a mix of half H2O and half D2O, when it equilibrates it will be half HDO, a quarter H2O and a quarter D2O. My question is "how long does this take?". Ballpark is fine - microsecodnds? Days? Centuries?
 
Chemistry news on Phys.org
Vanadium 50 said:
If I start with a mix of half H2O and half D2O, when it equilibrates it will be half HDO, a quarter H2O and a quarter D2O. My question is "how long does this take?". Ballpark is fine - microsecodnds? Days? Centuries?
What temperature/phase(solid, liquid, vapor)? Liquid kinetics are O(m) different from solid/vapor.
 
Liquid water, room temperature. Maybe a little cooler.
 
  • Like
Likes Vanadium 50
Mixing limited, technically this is not much different from acid/base reactions and these are quite fast, in nanosecond range if memory serves me well.
 
  • Like
Likes Vanadium 50, Frabjous and Bystander
Thanks. I guess I could think of it as an acid-base reaction, between some very week acids and bases. I don't know the pH of D2O, but imagine it's around 7.3.

Calculating from 1st principles looks like a nightmare, since you have a 6-way equilibrium between H2O, HDO, D2O, H+, D+, OH-, and OD-. (Plus the complication of whether H+ is really H3O+) But "a tint fraction oif a second" is a good enough answer for me.
 
I am not sure what that link is meant to say. It's just there.

It dies not mention a time, which is my original question. It does say, indirectly, that water (H2O) has a pH of 7. which is not news. (D2O I looked up and it is 7.4, I estimated 7.3)

I think @Borek answered my question. "As fast as they physically can mix"
 
  • #10
1696750889339.png


Handwavy, but more detailed answer. If you put several water molecules side by side, they will get linked by hydrogen bonds. Resulting four membered ring is highly symmetrical (even if not flat) and the bonds will start oscillating, resulting in a very quick exchange of H and D between water molecules. In the presence of H+ from water autodissociation this is made even easier, as H+ will attach itself to one of the lone electron pairs of a molecule (red outlined part). Charge will delocalize to all hydrogens three hydrogens (as in H3O+), which makes them even more eager to bond to neighbor water molecules, which further speeds up bond oscillations, to the point where charge easily jumps between water molecules, rearranging which hydrogen is attached to each oxygen on the way. That's actually why limiting ion conductivity of H+ is anomalously high, several times higher than that of any other ion - H+ doesn't have to travel by itself, it is charge that jumps (not the case of, say, Na+, which has to meticulously navigate between water molecules).

This explanation is far from being strict, but gives good intuition, and shows why individual water molecules in liquid water are not as "separate" as molecules in other liquids.
 
  • Like
Likes hutchphd, 256bits, DeBangis21 and 1 other person
Back
Top