##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##

  • Thread starter Thread starter littlemathquark
  • Start date Start date
  • Tags Tags
    Limit at infinity
littlemathquark
Messages
204
Reaction score
26
Homework Statement
##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##
Relevant Equations
none
##\left(1+\dfrac1n\right)^n=e^{n\ln\left(1+\dfrac1n\right)}## and using Taylor expansion ##\ln\left(1+\dfrac1n\right)=\dfrac 1n-\dfrac1{2n^2}+\dfrac1{3n^3}-\cdots##

##n\ln\left(1+\dfrac1n\right)=1-\dfrac 1{2n}+\dfrac1{3n^2}-\cdots##

##e^{n\ln(1+\frac1n)}=e.e^{-\frac1{2n}+\frac 1{3n^2}-...}## For small x real numbers ##e^x=1+x##, ##x=-\frac1{2n}+\frac 1{3n^2}-..##

##e^{n\ln(1+\frac1n)}=e.(1-\frac1{2n}+\frac 1{3n^2}-...)## and ##n.e^{n\ln(1+\frac1n)}=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)-n.e=-\frac e2+\frac e{3n}+...##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=-\frac e2 ##
 
Last edited:
Physics news on Phys.org
What about my solution?
 
littlemathquark said:
What about my solution?
I didn't check your work, but instead used Excel to approximate the limit. Your result seems about right to me.
 
You can also use L'Hopital, with ##x## in place of ##n##.
 
PeroK said:
You can also use L'Hopital, with ##x## in place of ##n##.
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
 
littlemathquark said:
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
Make the ##n## in the numerator ##\frac 1 n## on the denominator.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top