##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##

  • Thread starter Thread starter littlemathquark
  • Start date Start date
  • Tags Tags
    Limit at infinity
Click For Summary
The discussion focuses on evaluating the limit of the expression n((1 + 1/n)^n - e) as n approaches infinity. The derivation utilizes the Taylor expansion of the natural logarithm and properties of exponential functions to simplify the expression. The limit is found to be -e/2, confirming the correctness of the solution presented. Alternative methods, such as using Excel for approximation and L'Hopital's rule, are also suggested for verification. The conversation emphasizes the importance of recognizing the form of the limit as ∞ - ∞ rather than ∞/∞.
littlemathquark
Messages
204
Reaction score
26
Homework Statement
##\lim_{n\to\infty}\left(n\left(1+\frac1n\right)^n-ne\right)=?##
Relevant Equations
none
##\left(1+\dfrac1n\right)^n=e^{n\ln\left(1+\dfrac1n\right)}## and using Taylor expansion ##\ln\left(1+\dfrac1n\right)=\dfrac 1n-\dfrac1{2n^2}+\dfrac1{3n^3}-\cdots##

##n\ln\left(1+\dfrac1n\right)=1-\dfrac 1{2n}+\dfrac1{3n^2}-\cdots##

##e^{n\ln(1+\frac1n)}=e.e^{-\frac1{2n}+\frac 1{3n^2}-...}## For small x real numbers ##e^x=1+x##, ##x=-\frac1{2n}+\frac 1{3n^2}-..##

##e^{n\ln(1+\frac1n)}=e.(1-\frac1{2n}+\frac 1{3n^2}-...)## and ##n.e^{n\ln(1+\frac1n)}=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=n.e(1-\frac1{2n}+\frac 1{3n^2}-...)-n.e=-\frac e2+\frac e{3n}+...##

##\lim_{n \to \infty}(n.e^{n\ln(1+\frac1n)}-n.e)=-\frac e2 ##
 
Last edited:
Physics news on Phys.org
What about my solution?
 
littlemathquark said:
What about my solution?
I didn't check your work, but instead used Excel to approximate the limit. Your result seems about right to me.
 
You can also use L'Hopital, with ##x## in place of ##n##.
 
PeroK said:
You can also use L'Hopital, with ##x## in place of ##n##.
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
 
littlemathquark said:
How? Because it's not ##\infty/\infty##, it's ##\infty-\infty##
Make the ##n## in the numerator ##\frac 1 n## on the denominator.