Limit Considerations w/o L'Hôpital on a Quotient of Root Expressions

  • Thread starter Thread starter tellmesomething
  • Start date Start date
  • Tags Tags
    Limits
tellmesomething
Messages
443
Reaction score
68
Homework Statement
$$\lim_{x\to 1} \frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}$$ (##m## and ##n## are integers)
Relevant Equations
None
I know how to do this using lopital since its a 0/0 indeterminate form. However I would like to do it without using lopital as well..how should I go about it? For starters I thought of rationalizing the numerator and denominator but we cant necessarily apply the (a+b)(a-b) identity since we dont know if m and n are odd or even integers.. Please provide a hint..
 
Physics news on Phys.org
Observe $$\lim_{x\to 1} \frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1} = \lim_{x\to 1} \frac{\sqrt[n]{x} -1}{x-1} \cdot \lim_{x\to 1} \frac{x-1}{\sqrt[m]{x}-1}$$ Use the identity $$t^n - 1 = (t-1)(t^{n-1} + t^{n-2} + \cdots + t + 1)$$ with ##t = \sqrt[n]{x}## to simplify ##\lim_{x\to 1} \frac{\sqrt[n]{x}-1}{x-1}##. Use a similar factorization to compute ##\lim_{x\to 1} \frac{x-1}{\sqrt[m]{x}-1}##.
 
  • Like
Likes PeroK, FactChecker and tellmesomething
Euge said:
$$t^n - 1 = (t-1)(t^{n-1} + t^{n-2} + \cdots + t + 1)$$
Thankyou! I was looking for this general form.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
2K
Replies
21
Views
2K
Replies
3
Views
7K
Replies
8
Views
3K
Replies
7
Views
2K
Replies
2
Views
3K
Replies
5
Views
4K
Back
Top