Limit Function: Finding Solution

  • Context: MHB 
  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Function Limit
Click For Summary
SUMMARY

The limit of the function $$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n + 1}}$$ simplifies to $$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n}(n + 1)}$$. By applying the properties of limits and L'Hospital's Rule, the final result is established as 0. The analysis demonstrates that as n approaches infinity, the expression converges to zero due to the exponential decay of the fraction.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with L'Hospital's Rule
  • Knowledge of exponential functions and their properties
  • Ability to manipulate logarithmic expressions
NEXT STEPS
  • Study the application of L'Hospital's Rule in various limit problems
  • Explore the behavior of exponential functions as n approaches infinity
  • Learn about logarithmic limits and their simplifications
  • Investigate other methods for evaluating limits, such as the Squeeze Theorem
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and analysis, will benefit from this discussion. It is also valuable for educators teaching limit concepts and techniques.

tmt1
Messages
230
Reaction score
0
I'm trying to find the limit of this function:

$$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n + 1}}$$

I can simplify it to this:

$$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n}(n + 1)}$$

But I'm not sure of the best way to proceed.
 
Physics news on Phys.org
tmt said:
I'm trying to find the limit of this function:

$$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n + 1}}$$

I can simplify it to this:

$$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n}(n + 1)}$$

But I'm not sure of the best way to proceed.

$\displaystyle \begin{align*} &= \lim_{n \to \infty} \left( \frac{n}{n + 1} \right) ^n \left( \frac{1}{n + 1} \right) \\ &= \lim_{n \to \infty} \left( \frac{n}{n + 1} \right) ^n \, \lim_{n \to \infty} \frac{1}{n + 1} \\ &= \lim_{n \to \infty} \left( 1 - \frac{1}{n + 1} \right) ^n \,\lim_{n \to \infty} \frac{1}{n + 1} \\ &= \lim_{n \to \infty} \mathrm{e}^{ \ln{ \left[ \left( 1 - \frac{1}{n + 1} \right) ^n \right] } }\,\lim_{n \to \infty} \frac{1}{n + 1} \\ &= \mathrm{e}^{ \lim_{n \to \infty} \frac{\ln{ \left( 1 - \frac{1}{n + 1} \right) }}{\frac{1}{n}} }\,\lim_{n \to \infty} \frac{1}{n + 1} \end{align*}$

Use L'Hospital's Rule to finish it off :)
 
An alternative to L'Hospital's rule in this context is the fact that $\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$. Then
\begin{align}
\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)^n&=
\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)^{n+1}\left(\frac{n+1}{n}\right)\\
&=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^{n}\lim_{n\to\infty}\left(\frac{n+1}{n}\right)\\
&=e^{-1}\cdot1.
\end{align}
 
Alternatively:
$$\frac{n^n}{({n + 1})^{n + 1}} = \left(\frac{n}{n + 1}\right)^{n} \cdot \frac{1}{n + 1} \le 1^n \cdot \frac{1}{n + 1} \to 0
$$
So:
$$\lim_{{n}\to{\infty}} \frac{n^n}{({n + 1})^{n + 1}} = 0$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K