Limit of Complex Sums: Find $$\lim_{n\to \infty}$$

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Complex Limit Sums
Click For Summary
SUMMARY

The limit of the complex sum $$\lim_{n\to \infty} \frac{1}{n}\sum_{\ell = 1}^n \frac{\sin(e^{2\pi i \ell/n})}{1-ce^{-2\pi i \ell/n}}$$ is evaluated for a complex number ##c## where ##|c| \neq 1##. The discussion concludes that the limit converges to a specific value based on the properties of the sine function and the behavior of the denominator as ##n## approaches infinity. Key techniques used include the application of the Dominated Convergence Theorem and properties of complex analysis.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with limits and convergence in calculus
  • Knowledge of the Dominated Convergence Theorem
  • Basic understanding of the sine function and its behavior in the complex plane
NEXT STEPS
  • Study the Dominated Convergence Theorem in detail
  • Explore properties of complex functions and their limits
  • Learn about the behavior of the sine function in the complex plane
  • Investigate advanced topics in complex analysis, such as contour integration
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in evaluating limits involving complex sums and functions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##c## be a complex number with ##|c| \neq 1##. Find $$\lim_{n\to \infty} \frac{1}{n}\sum_{\ell = 1}^n \frac{\sin(e^{2\pi i \ell/n})}{1-ce^{-2\pi i \ell/n}}$$
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
We have that:

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi} \int_0^{2 \pi} \dfrac{ \sin \left( e^{i \theta} \right) }{ 1 - c e^{- i \theta} } d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{1 - c z^{-1}} \frac{dz}{z}
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\end{align*}

Since ##\sin z## is an entire function (having no singularities at any point in the complex plane), the function

\begin{align*}
f(z) = \dfrac{\sin z}{z - c}
\end{align*}

only has a (simple) pole at ##z_0 = c##.

Therefore, if ##|c| < 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = \sin c .
\end{align*}

If ##|c| > 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = 0 .
\end{align*}

Proof that ##\sin z## is an entire function: Note

\begin{align*}
\sin (x+iy) & = \dfrac{e^{i x - y} - e^{-i x + y}}{2i}
\nonumber \\
& = \dfrac{e^{i x} - e^{-i x}}{2i} \dfrac{e^y + e^{- y}}{2} + i \dfrac{e^{i x} + e^{-i x}}{2} \dfrac{e^y - e^{- y}}{2}
\nonumber \\
& = \sin x \cosh y + i \cos x \sinh y
\nonumber \\
& =u (x,y) + i v (x,y)
\end{align*}

Note

\begin{align*}
u_x & = \cos x \cosh y ,
\nonumber \\
u_y & = \sin x \sinh y
\nonumber \\
v_x & = - \sin x \sinh y ,
\nonumber \\
v_y & = \cos x \cosh y .
\end{align*}

We read off that

\begin{align*}
u_x = v_y , \qquad v_x=- u_y
\end{align*}

for all ##x,y \in \mathbb{R}##, hence the CR conditions are satisfied for ##x,y \in \mathbb{R}##, and so the function ##\sin z## is entire.
 
Last edited:
  • Like
Likes   Reactions: Office_Shredder, Euge and topsquark

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K