POTW Limit of Complex Sums: Find $$\lim_{n\to \infty}$$

Click For Summary
The limit of the complex sum is evaluated as $$\lim_{n\to \infty} \frac{1}{n}\sum_{\ell = 1}^n \frac{\sin(e^{2\pi i \ell/n})}{1-ce^{-2\pi i \ell/n}}$$ for a complex number c where |c| ≠ 1. The analysis involves recognizing that as n approaches infinity, the sum can be interpreted as a Riemann integral. The behavior of the sine function and the denominator's properties are crucial for determining convergence. The final result shows that the limit converges to a specific value depending on the characteristics of c. This mathematical exploration highlights the significance of complex analysis in evaluating limits of sums.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##c## be a complex number with ##|c| \neq 1##. Find $$\lim_{n\to \infty} \frac{1}{n}\sum_{\ell = 1}^n \frac{\sin(e^{2\pi i \ell/n})}{1-ce^{-2\pi i \ell/n}}$$
 
Physics news on Phys.org
We have that:

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi} \int_0^{2 \pi} \dfrac{ \sin \left( e^{i \theta} \right) }{ 1 - c e^{- i \theta} } d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{1 - c z^{-1}} \frac{dz}{z}
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\end{align*}

Since ##\sin z## is an entire function (having no singularities at any point in the complex plane), the function

\begin{align*}
f(z) = \dfrac{\sin z}{z - c}
\end{align*}

only has a (simple) pole at ##z_0 = c##.

Therefore, if ##|c| < 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = \sin c .
\end{align*}

If ##|c| > 1## then

\begin{align*}
\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\ell= 1}^n \dfrac{\sin \left( e^{2 \pi i \ell / n} \right)}{1 - ce^{- 2 \pi i \ell / n}} & = \frac{1}{2 \pi i} \oint_{|z|=1} \dfrac{\sin z}{z - c} dz
\nonumber \\
& = 0 .
\end{align*}

Proof that ##\sin z## is an entire function: Note

\begin{align*}
\sin (x+iy) & = \dfrac{e^{i x - y} - e^{-i x + y}}{2i}
\nonumber \\
& = \dfrac{e^{i x} - e^{-i x}}{2i} \dfrac{e^y + e^{- y}}{2} + i \dfrac{e^{i x} + e^{-i x}}{2} \dfrac{e^y - e^{- y}}{2}
\nonumber \\
& = \sin x \cosh y + i \cos x \sinh y
\nonumber \\
& =u (x,y) + i v (x,y)
\end{align*}

Note

\begin{align*}
u_x & = \cos x \cosh y ,
\nonumber \\
u_y & = \sin x \sinh y
\nonumber \\
v_x & = - \sin x \sinh y ,
\nonumber \\
v_y & = \cos x \cosh y .
\end{align*}

We read off that

\begin{align*}
u_x = v_y , \qquad v_x=- u_y
\end{align*}

for all ##x,y \in \mathbb{R}##, hence the CR conditions are satisfied for ##x,y \in \mathbb{R}##, and so the function ##\sin z## is entire.
 
Last edited:
  • Like
Likes Office_Shredder, Euge and topsquark