Hi guys,(adsbygoogle = window.adsbygoogle || []).push({});

I have questions about algebraic functions and not sure where to ask. Hope it's ok here.

Given the algebraic function

[tex]f(z,w)=a_0(z)+a_1(z)w+\cdots+a_n(z)w^n=0[/tex]

I recall seeing a reference that stated as [itex]n[/itex] increases, the critical points of the function migrate to the unit circle or they migrate to some other circle depending on the orders of [itex]a_i[/itex]. Not sure what. However, the trend is nicely suggestive by the four plots below for n=5, 10, 15, 20 where the degree of each [itex]a_i[/itex] is also 5, 10, 15, and 20 respectively and where the set of points is where the number of roots of [itex]f(z_0,w)=0[/itex] is less than [itex]n[/itex]. This I compute by setting the resultant of f(z,w) and it's partial with respect to w both equal to zero and that happens only when there is a root of multiplicity greater than one or the point [itex]z_0[/itex] is a solution to [itex]a_n(z)=0[/itex]. I'm now unable to find that reference and was hoping someone could help me.

May I ask what exactly do the critical points tend to and how is this proven?

Thanks,

Jack

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Limit of critical points of algebraic functions

**Physics Forums | Science Articles, Homework Help, Discussion**