Limit of Ratio of Difference of Trig Functions at $\pi/4$

Click For Summary
SUMMARY

The limit of the ratio of the difference of trigonometric functions at $\pi/4$ is evaluated as follows: $$\lim_{x \to \pi/4} \frac{1-\tan(x)}{\sin(x)-\cos(x)} = -\sqrt{2}$$. The evaluation employs L'Hospital's Rule due to the indeterminate form $\frac{0}{0}$. By rewriting $\tan(x)$ as $\frac{\sin(x)}{\cos(x)}$ and applying calculus techniques, the limit is derived definitively as $-\sqrt{2}$.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with trigonometric functions and identities
  • Knowledge of L'Hospital's Rule
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Study the application of L'Hospital's Rule in various limit problems
  • Explore the properties of trigonometric functions and their derivatives
  • Learn about the continuity and differentiability of trigonometric functions
  • Investigate other limit evaluation techniques, such as Taylor series expansions
USEFUL FOR

Students and educators in calculus, mathematicians focusing on limits and trigonometric analysis, and anyone looking to deepen their understanding of calculus applications in trigonometry.

Petrus
Messages
702
Reaction score
0
$$\lim_{x \to \pi/4} \frac{1-\tan(x)}{\sin(x)-\cos(x)}$$
progress:
I start with rewriting $\tan(x)=\frac{\sin(x)}{\cos(x)}$

 
Physics news on Phys.org
Re: Trig limit

Petrus said:
$$\lim_{x \to \pi/4} \frac{1-\tan(x)}{\sin(x)-\cos(x)}$$
progress:
I start with rewriting $\tan(x)=\frac{\sin(x)}{\cos(x)}$



Try writing...

$\displaystyle \frac{1 - \tan x}{\sin x - \cos x} = - \frac{1}{\cos x}\ \frac{1- \frac{\sin x}{\cos x}} {1 - \frac{\sin x}{\cos x}} = - \frac{1}{\cos x}$ (1)

Kind regards

$\chi$ $\sigma$
 
Re: Trig limit

Let $\displaystyle \ell = \lim_{x \to \frac{\pi}{4}}\frac{1-\tan{x}}{\cos{x}-\sin{x}}.$ Sub $x = \tan^{-1}{t} $ then $ x \to \frac{\pi}{4} \implies t \to 1$; also $\tan{x} = t$, $\displaystyle \cos{x} = \frac{1}{\sqrt{1+t^2}}$ and $\displaystyle \sin{x} = \frac{t}{\sqrt{1+t^2}}$. Thus $\displaystyle \ell = \lim_{t \to 1}\frac{1-t}{\frac{1-t}{\sqrt{1+t^2}}} = \lim_{t \to 1}\sqrt{1+t^2} = \sqrt{2}$.
 
Hello, Petrus!

A slightly different approach . . .

\lim_{x\to \frac{\pi}{4}} \frac{1-\tan x}{\sin x - \cos x}
\lim_{x\to\frac{\pi}{4}} \frac{1 - \frac{\sin x}{\cos x}}{\sin x - \cos x} \;=\; \lim_{x\to\frac{\pi}{4}}\frac{\frac{\cos x - \sin x}{\cos x}}{\sin x - \cos x} \;=\;\lim_{x\to\frac{\pi}{4}}\frac{\cos x-\sin x}{\cos x(\sin x - \cos x)}

. . . =\;\lim_{x\to\frac{\pi}{4}}\frac{-(\sin x - \cos x)}{\cos x(\sin x - \cos x)} \;=\;\lim_{x\to\frac{\pi}{4}}\frac{-1}{\cos x} \;\;\cdots\;\; \text{etc.}
 
Petrus said:
$$\lim_{x \to \pi/4} \frac{1-\tan(x)}{\sin(x)-\cos(x)}$$
progress:
I start with rewriting $\tan(x)=\frac{\sin(x)}{\cos(x)}$



Since this goes to $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$, L'Hospital's Rule can be used.

$\displaystyle \begin{align*} \lim_{x \to \frac{\pi}{4}}{\frac{1 - \tan{(x)}}{\sin{(x)} - \cos{(x)}}} &= \lim_{x \to \frac{\pi}{4}}{\frac{-\sec^2{(x)}}{\cos{(x)} + \sin{(x)}}} \\ &= \frac{-\left( \sqrt{2} \right)^2}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} \\ &= \frac{-2}{\frac{2}{\sqrt{2}}} \\ &= -\sqrt{2} \end{align*}$
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K