- #1
mynameisfunk
- 125
- 0
limit proofs(indeterminate forms??)
We work in the real numbers. Are the following true or false? Give a proof or counterexample.
(a) If [itex]\sum a^4_n[/itex] converges, then [itex]\sum a^5_n[/itex] converges.
(b) If [itex]\sum a^5_n[/itex] converges, then [itex]\sum a^6_n[/itex] converges.
(c) If [itex]a_n \geq 0[/itex] for all [itex]n[/itex], and [itex]\sum a_n[/itex] converges, then [itex]na_n \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
(d) If [itex]a_n \geq 0[/itex], for all [itex]n[/itex], and [itex]\sum a_n[/itex] converges, then [itex]n(a_n - a_{n-1}) \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
(e) If [itex]a_n[/itex] is a decreasing sequence of positive numbers, and [itex]\sum a_n[/itex] converges, then [itex]na_n \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
(a) and (b) can be proved similarly. Since [itex]\sum a_n^4[/itex] converges, for some [itex]N[/itex], when [itex]n \geq N[/itex], then [itex]a_n^4 < 1[/itex]. Take [itex]\beta[/itex] s.t., [itex]a_n^4 < \beta < 1[/itex]. That is, [itex]a_n < (\beta)^{1/4} < 1[/itex]. Also, [itex]|(\beta)^{1/5}| < 1[/itex]. This implies that [itex]|a_n^5| < 1[/itex] and therefore [itex]\sum |a_n^5|[/itex] converges.
(c) This is where I get confused. THis seems like an indeterminate form, we have never done this in class. same for (d) and (e). any suggestions?
Homework Statement
We work in the real numbers. Are the following true or false? Give a proof or counterexample.
(a) If [itex]\sum a^4_n[/itex] converges, then [itex]\sum a^5_n[/itex] converges.
(b) If [itex]\sum a^5_n[/itex] converges, then [itex]\sum a^6_n[/itex] converges.
(c) If [itex]a_n \geq 0[/itex] for all [itex]n[/itex], and [itex]\sum a_n[/itex] converges, then [itex]na_n \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
(d) If [itex]a_n \geq 0[/itex], for all [itex]n[/itex], and [itex]\sum a_n[/itex] converges, then [itex]n(a_n - a_{n-1}) \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
(e) If [itex]a_n[/itex] is a decreasing sequence of positive numbers, and [itex]\sum a_n[/itex] converges, then [itex]na_n \rightarrow 0[/itex] as [itex]n \rightarrow \infty[/itex].
Homework Equations
The Attempt at a Solution
(a) and (b) can be proved similarly. Since [itex]\sum a_n^4[/itex] converges, for some [itex]N[/itex], when [itex]n \geq N[/itex], then [itex]a_n^4 < 1[/itex]. Take [itex]\beta[/itex] s.t., [itex]a_n^4 < \beta < 1[/itex]. That is, [itex]a_n < (\beta)^{1/4} < 1[/itex]. Also, [itex]|(\beta)^{1/5}| < 1[/itex]. This implies that [itex]|a_n^5| < 1[/itex] and therefore [itex]\sum |a_n^5|[/itex] converges.
(c) This is where I get confused. THis seems like an indeterminate form, we have never done this in class. same for (d) and (e). any suggestions?