Ragnarok7
- 50
- 0
I have the following problem:
$$\lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
If I multiply by the conjugate of the denominator I get
$$\lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}$$
but am not sure where to go from here. Any suggestions? Thank you!
$$\lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
If I multiply by the conjugate of the denominator I get
$$\lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}$$
but am not sure where to go from here. Any suggestions? Thank you!