MHB Limit with a lot of square roots

Ragnarok7
Messages
50
Reaction score
0
I have the following problem:

$$\lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$

If I multiply by the conjugate of the denominator I get

$$\lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}$$

but am not sure where to go from here. Any suggestions? Thank you!
 
Physics news on Phys.org
Ragnarok said:
I have the following problem:

$$\lim_{x\rightarrow 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$

If I multiply by the conjugate of the denominator I get

$$\lim_{x\rightarrow 4}\frac{\sqrt{(2x+1)(x-2)}+\sqrt{2(2x+1)}-3\sqrt{x-2}-3\sqrt{2}}{x-4}$$

but am not sure where to go from here. Any suggestions? Thank you!

In this case l'Hopital rule leads to the solution...

$\displaystyle \lim_{x \rightarrow 4}\frac{\sqrt{2\ x + 1} - 3}{\sqrt{x-2} - \sqrt{2}} = \lim_{x \rightarrow 4} \frac{2\ \sqrt{x-2}}{\sqrt{2\ x + 1}} = \frac{2\ \sqrt{2}}{3}$

Kind regards$\chi$ $\sigma$
 
Thank you! Is it possible to solve this without L'Hospital's rule? The text I'm using hasn't introduced that in the section I got the problem from.
 
Ragnarok said:
Thank you! Is it possible to solve this without L'Hospital's rule? The text I'm using hasn't introduced that in the section I got the problem from.

All right!... an alternative is possible taking into account that 'for small t' is $\displaystyle \sqrt {1 + t} \sim 1 +\frac{t}{2}$ ...

Setting $x = 4 - \xi$ is ...

$\displaystyle \frac{\sqrt{2\ x +1}-3}{\sqrt{x-2}- \sqrt{2}}= \frac{\sqrt {9 -2\ \xi } - 3} {\sqrt{2 - \xi} - \sqrt{2}} \sim \frac{3}{\sqrt{2}}\ \frac{4}{9} = \frac{2\ \sqrt{2}}{3}\ (1)$

Kind regards$\chi$ $\sigma$
 
Last edited:
Hello, Ragnarok!

$$\lim_{x\to 4}\frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
Rationalize the denominator and the numerator.

\frac{\sqrt{2x+1} - 3}{\sqrt{x-2} - \sqrt{2}}\cdot\frac{\sqrt{x-2} + \sqrt{2}}{\sqrt{x-2} + \sqrt{2}} \cdot \frac{\sqrt{2x+1}+3}{\sqrt{2x+1}+3}

\quad =\; \frac{\big([2x+1] - 9\big)(<br /> \sqrt{x-2} + \sqrt{2})}{\big([x-2]-2\big)(\sqrt{2x+1} + 3)}

\quad =\; \frac{(2x-8)(\sqrt{x-2} + \sqrt{2})}{(x-4)(\sqrt{2x+1} + 3)}

\quad =\; \frac{2(x-4)(\sqrt{x-2} + \sqrt{2})}{(x-4)(\sqrt{2x+1} + 3)}

\quad =\; \frac{2(\sqrt{x-2} + \sqrt{2})}{\sqrt{2x+1} + 3}\lim_{x\to4} \frac{2(\sqrt{x-2} + \sqrt{2})}{\sqrt{2x+1} + 3} \;=\;\frac{2(\sqrt{2}+\sqrt{2})}{\sqrt{9} + 3}

. . . . . =\;\frac{2(2\sqrt{2})}{6} \;=\;\frac{2\sqrt{2}}{3}
 
Thank you so much! I wouldn't have thought to do it like this.
 

Similar threads

Replies
6
Views
2K
Replies
3
Views
1K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
Replies
3
Views
5K
Replies
3
Views
2K
Back
Top