Linear Algebra Eigenspace Question

Nexttime35
Messages
46
Reaction score
1

Homework Statement


Let T: C∞(R)→C∞(R) be given by T(f) = f'''' where T sends a function to the fourth derivative.

a) Find a basis for the 0-eigenspace.
b) Find a basis for the 1-eigenspace.


The Attempt at a Solution



I just want to verify my thought process for this problem. For a), finding the basis for the 0-eigenspace, essentially I needed to find a basis for the vectors v in V such that T(v) = 0v .

So, would the basis for this 0-eigenspace be all polynomials in P3? If you solve the fourth derivative of any polynomial in P3, you will get 0.

As for b), when finding the basis for the 1-eigenspace, we need to find a basis for the vectors v in V such that T(v) = 1v, or that after solving the fourth derivative, you get a function that is equal to 1? Is this the correct logic? So would the basis for the 1-eigenspace be any polynomial in P4?

Thanks much for your help.
 
Physics news on Phys.org
The 1 eigenspace is vectors that map to themselves. Not to the vector 1.
 
If by ##C^∞## you mean the space of all infinitely differentiable functions, then there are a lot more than polynomials around.

Let ##f \in C^∞##. Look at the power series: ##f(x) = ∑_{i=0}^{∞} a_i x^i##. If the fourth derivative of ##f## is 0, then you have that ##a_i = 0## for ##i \geq 4##. Thus the choice of ##a_0, a_1, a_2, a_3## determines ##f## in the 0-eigenspace. Using this, can you come up with a basis? (It will have 4 functions in it).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top