Linear Algebra for Quantum Mechanics (QM) Preparation

Click For Summary
SUMMARY

The discussion centers on recommendations for advanced linear algebra texts suitable for preparing for a Quantum Mechanics (QM) course. Participants suggest "Principles of Quantum Mechanics" by R. Shankar for its mathematical introduction and emphasize the importance of early exposure to linear transformations and operators. Axler's text is highly recommended for its clarity, while caution is advised against books like Anton's that delay critical concepts. Additionally, resources such as Dirac's book and various math methods texts are mentioned as valuable for understanding infinite-dimensional vector spaces and matrix properties.

PREREQUISITES
  • Understanding of linear transformations and operators
  • Familiarity with diagonalization techniques
  • Knowledge of infinite-dimensional vector spaces
  • Basic concepts of Hermitian and adjoint matrices
NEXT STEPS
  • Study "Principles of Quantum Mechanics" by R. Shankar for foundational concepts
  • Read "Linear Algebra Done Right" by Sheldon Axler for a focused approach to QM
  • Explore Dirac's book for insights on Kets and Bras Algebra
  • Investigate advanced math methods texts for comprehensive coverage of relevant topics
USEFUL FOR

Students preparing for Quantum Mechanics courses, educators seeking advanced linear algebra resources, and anyone looking to deepen their understanding of mathematical concepts in physics.

ralqs
Messages
97
Reaction score
1
I just finished a course on linear algebra. The class was quite slow, and not much material was covered (essentially going as far as diagonalization w/ some applications). Seeing as I will be taking a QM course next semester, I thought that it might be a good idea to advance myself on the math behind QM over the summer. Could someone recommend a suitable advanced linear algebra text that would be appropriate for QM?
 
Physics news on Phys.org
ralqs said:
I just finished a course on linear algebra. The class was quite slow, and not much material was covered (essentially going as far as diagonalization w/ some applications). Seeing as I will be taking a QM course next semester, I thought that it might be a good idea to advance myself on the math behind QM over the summer. Could someone recommend a suitable advanced linear algebra text that would be appropriate for QM?

Try the first chapter of "Principles of Quantum Mechanics - R. Shankar" called Mathematical introduction,and you will know exactly what you are going to learn
 
I think Axler is excellent for QM. You should stay away from books that delay the introduction of linear transformations/operators instead of introducing them early. For example, Anton defines them around page 300, which is just ridiculous. Make sure you understand the relationship between linear operators and matrices (i.e. this) perfectly.
 
totentanz said:
Try the first chapter of "Principles of Quantum Mechanics - R. Shankar" called Mathematical introduction,and you will know exactly what you are going to learn
I skimmed through it, and although it seems good, I'm always a little suspect of physics texts that try to teach math. My experience is that they are generally rushed, and important ideas and concepts are missed in the process. Would you happen to know a book exclusively dedicated to the same topics, but more thorough?



Fredrik said:
I think Axler is excellent for QM. You should stay away from books that delay the introduction of linear transformations/operators instead of introducing them early. For example, Anton defines them around page 300, which is just ridiculous. Make sure you understand the relationship between linear operators and matrices (i.e. this) perfectly.
That stuff I know already. My linear prof had promised, in the beginning of the course, to discuss infinite-dimensional vector spaces, as well as certain types of matrices and their properties (ie hermitean, adjoint, etc.)
 
ralqs said:
I skimmed through it, and although it seems good, I'm always a little suspect of physics texts that try to teach math. My experience is that they are generally rushed, and important ideas and concepts are missed in the process. Would you happen to know a book exclusively dedicated to the same topics, but more thorough?

The book by https://www.amazon.com/dp/0486453278/?tag=pfamazon01-20 may be what you're looking for. At least you'll find links to many similar books on that page.

You could also try a math methods book like https://www.amazon.com/dp/048667164X/?tag=pfamazon01-20.

Or the many books aimed at https://www.amazon.com/dp/048667164X/?tag=pfamazon01-20.
 
Last edited by a moderator:
ralqs said:
I skimmed through it, and although it seems good, I'm always a little suspect of physics texts that try to teach math. My experience is that they are generally rushed, and important ideas and concepts are missed in the process. Would you happen to know a book exclusively dedicated to the same topics, but more thorough?




That stuff I know already. My linear prof had promised, in the beginning of the course, to discuss infinite-dimensional vector spaces, as well as certain types of matrices and their properties (ie hermitean, adjoint, etc.)

So try Dirac's book...I think in QM you will ned most Kets and Bras Algabra
 
ralqs said:
I skimmed through it, and although it seems good, I'm always a little suspect of physics texts that try to teach math. My experience is that they are generally rushed, and important ideas and concepts are missed in the process. Would you happen to know a book exclusively dedicated to the same topics, but more thorough?

Try http://de.arxiv.org/abs/0810.1019
 

Similar threads

Replies
12
Views
10K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K