Linear algebra inner products, self adjoint operator,unitary operation

Click For Summary
SUMMARY

The discussion focuses on the properties of self-adjoint operators and eigenvalues in the context of continuous functions. It is established that the operator ##L_h## is self-adjoint only when the imaginary part of the parameter ##h## is zero. Participants explore the concept of eigenvalues, particularly when ##h## is a piecewise constant function, leading to the identification of eigenvectors corresponding to specific eigenvalues. The conversation emphasizes the importance of continuous functions and the necessity of ensuring that functions are defined appropriately across specified intervals.

PREREQUISITES
  • Understanding of self-adjoint operators in linear algebra
  • Knowledge of eigenvalues and eigenvectors
  • Familiarity with continuous functions and piecewise definitions
  • Basic concepts of functional analysis
NEXT STEPS
  • Study the properties of self-adjoint operators in functional analysis
  • Learn about the spectral theorem for bounded operators
  • Explore the concept of eigenspaces and their dimensions
  • Investigate piecewise continuous functions and their applications in linear algebra
USEFUL FOR

Mathematicians, physics students, and anyone studying linear algebra, particularly those interested in operator theory and functional analysis.

Karl Karlsson
Messages
104
Reaction score
12
Homework Statement
Let ##V = \mathbb{C}([0, 1], \mathbb{C})## be the vector space of continuous functions ##f: [0,1] \rightarrow \mathbb{C}## with inner product:
$$\langle f|g \rangle = \int_0^1 \overline {f(t)}g(t)\;\mathrm{d}t$$

For ##h \in V## , let ##L_h: V \rightarrow V## be the operator defined by ##L_h(f)(t)=h(t)f(t)##.
b) Determine the adjoint operator to ##L_h##
c) For which functions is the operator ##L_h## self adjoint?
d) For which functions is the operator ##L_h## unitary?
e) Give example of one function h(t) such that the operator ##L_h## is self adjoint and has at least two different eigenvalues
Relevant Equations
$$\langle f|g \rangle = \int_0^1 \overline {f(t)}g(t)\;\mathrm{d}t$$
##L_h(f)(t)=h(t)f(t)##
b)
Skärmavbild 2020-11-15 kl. 22.21.25.png

c and d):
In c) I say that ##L_h## is only self adjoint if the imaginary part of h is 0, is this correct?
Skärmavbild 2020-11-15 kl. 22.23.27.png

e) Here I could only come up with eigenvalues when h is some constant say C, then C is an eigenvalue. But I' can't find two.Otherwise does b-d above look correct?

Thanks in advance!
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
It's looks all right. For d) perhaps think about writing ##h(t)## in polar form - that might be neater.

For e), remember these functions are only continuous. You have lots of options for where they are zero and non-zero.
 
PeroK said:
It's looks all right. For d) perhaps think about writing ##h(t)## in polar form - that might be neater.
Do you mean having ##a(t)=r\cdot cos(t)## and ##b(t)=r\cdot sin(t)## and r=1 ?
PeroK said:
For e), remember these functions are only continuous. You have lots of options for where they are zero and non-zero.
Like what? I can't see how it would work for cos(t) ##e^t## t or any other normal continuous function
 
Karl Karlsson said:
Do you mean having ##a(t)=r\cdot cos(t)## and ##b(t)=r\cdot sin(t)## and r=1 ?

Like what? I can't see how it would work for cos(t) ##e^t## t or any other normal continuous function

I was thinking ##e^{ia(t)}## for some real function ##a(t)##. But, what you have is fine.

Try thinking about continuous functions more generally. Something like ##\cos t## is no good. That would never work. What's "normal"?
 
PeroK said:
Try thinking about continuous functions more generally. Something like ##\cos t## is no good. That would never work. What's "normal"?
I was just mentioning som elementary continuous functions that came to my mind but none of those seem to work and I can't find one that does.
 
Karl Karlsson said:
I was just mentioning som elementary continuous functions that came to my mind but none of those seem to work and I can't find one that does.
What about a continuous step-function?
 
PeroK said:
What about a continuous step-function?
Ooh, right! You mean if I for example said h(t)=1 in the intervall 0<t<0.5 and h(t)=2 in the intervall 0.5<t<1. One eigenvector for the eigenvalue 1 could be the function f(t) which is ##t-0.5## on the intervall 0<t<0.5 and f(t)=0 on 0.5<t<1 ? And for for the eigenvalue 2 an eigenvector could be g(t) = 0 on 0<t<0.5 and ##g(t) =t-0.5## on 0.5<t<1?
 
Karl Karlsson said:
Ooh, right! You mean if I for example said h(t)=1 in the intervall 0<t<0.5 and h(t)=2 in the intervall 0.5<t<1. One eigenvector for the eigenvalue 1 could be the function f(t) which is ##t-0.5## on the intervall 0<t<0.5 and f(t)=0 on 0.5<t<1 ? And for for the eigenvalue 2 an eigenvector could be g(t) = 0 on 0<t<0.5 and ##g(t) =t-0.5## on 0.5<t<1?
That's not a continuous step function. You need to join the steps. The eigenfunctions would be any function that is zero outside one of the steps.
 
PeroK said:
That's not a continuous step function. You need to join the steps. The eigenfunctions would be any function that is zero outside one of the steps.
Yeah, I realized that afterwards. So i can choose h = 1 on 0 <= t <= 1/3 and h=3t on 1/3 < t < 2/3 and h=2 on 2/3 <=t <= 1. An eigenvector to eigenvalue 1 could be a function that is t-1/3 on the intervall 0<=t<=1/3 and 0 on 1/3<t<=1. An eigenvector to eigenvalue 2 could be a function that is 0 on the interval 0<=t<2/3 and t-2/3 on 2/3<=t<=1. Is this correct?
 
  • Like
Likes   Reactions: PeroK
  • #10
Karl Karlsson said:
Yeah, I realized that afterwards. So i can choose h = 1 on 0 <= t <= 1/3 and h=3t on 1/3 < t < 2/3 and h=2 on 2/3 <=t <= 1. An eigenvector to eigenvalue 1 could be a function that is t-1/3 on the intervall 0<=t<=1/3 and 0 on 1/3<t<=1. An eigenvector to eigenvalue 2 could be a function that is 0 on the interval 0<=t<2/3 and t-2/3 on 2/3<=t<=1. Is this correct?
Yes. Note that you have a whole eigenspace of functions that are zero on one of these regions. The set of functions that are zero on ##[0, 2/3]## is a vector subspace - and is the eigenspace of your operator corresponding to eigenvalue ##2##.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 19 ·
Replies
19
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K