MHB Linear Map, T^p(x)=0, Show Linear Independence

joypav
Messages
149
Reaction score
0
Problem:

Suppose V is a complex vector space of dimension n, and T is a linear map from V to V. Suppose $x \in V$, and p is a positive integer such that $T^p(x)=0$ but $T^{p-1}(x)\ne0$.

Show that $x, Tx, T^2x, ... , T^{p-1}x$ are linearly independent.During class my professor said it was "a fact" that

If V is a complex vector space of dimension n, and T is a linear map from V to V such that $T^n(x)=0$ but $T^{n-1}(x)\ne0$,
then there exists an x such that $x, Tx, T^2x, ... , T^{n-1}x$ are linearly independent.

Is this what I should use for this problem? If so, do I need to know how I can determine such an x?
 
Physics news on Phys.org
What you assert your professor said and the theorem you state are not quite the same. You say your professor said "If V is a complex vector space of dimension n, and T is a linear map from V to V such that T^n(x)= 0 but T^{n-1}(x) is not 0" then there exist x such that ...". If the conclusion is "there exist x" then what is that x in the hypothesis?

In any case, given that, for some linear transformation there exist vector x and integer n such that T^n(x)= 0 but that T^{n-1}(x)\ne 0 (from which it follows that T^m(x)\ne 0 for any m< n), the suppose to the contrary that x, T(x), T^2(x), ..., T^{n-1}(x) are NOT linearly independent. Then there exist \{a_n\}, not all 0, such that a_0x+ a_1T(x)+\cdot\cdot\cdot+ a_{n-2}T^{n-2}(x)+ a_{n-}T^{n-1}(x)= 0. Apply T to both sides: a_0T(x)+ a_1T^2(x)+ \cdot\cdot\cdot+ a_{n-1}T^{n-1}(x)+ a_nT^n(x)= a_0T(x)+ a_1T^2(x)+ \cdot\cdot\cdot+ a_{n-1}T^{n-1}(x)= 0.

Applying T n-1 times, and repeatedly using the fact that T^n(x)= 0, we arrive at a_0T^{n-1}(x)= 0. If a_0\ne 0 it follows that T^{n-1}(x)= 0, a contradiction. If a_0= 0, we only need to apply T n-2 times to arrive at a_1T^{n-1}(x)= 0, etc.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top