MHB Linear Map, T^p(x)=0, Show Linear Independence

joypav
Messages
149
Reaction score
0
Problem:

Suppose V is a complex vector space of dimension n, and T is a linear map from V to V. Suppose $x \in V$, and p is a positive integer such that $T^p(x)=0$ but $T^{p-1}(x)\ne0$.

Show that $x, Tx, T^2x, ... , T^{p-1}x$ are linearly independent.During class my professor said it was "a fact" that

If V is a complex vector space of dimension n, and T is a linear map from V to V such that $T^n(x)=0$ but $T^{n-1}(x)\ne0$,
then there exists an x such that $x, Tx, T^2x, ... , T^{n-1}x$ are linearly independent.

Is this what I should use for this problem? If so, do I need to know how I can determine such an x?
 
Physics news on Phys.org
What you assert your professor said and the theorem you state are not quite the same. You say your professor said "If V is a complex vector space of dimension n, and T is a linear map from V to V such that T^n(x)= 0 but T^{n-1}(x) is not 0" then there exist x such that ...". If the conclusion is "there exist x" then what is that x in the hypothesis?

In any case, given that, for some linear transformation there exist vector x and integer n such that T^n(x)= 0 but that T^{n-1}(x)\ne 0 (from which it follows that T^m(x)\ne 0 for any m< n), the suppose to the contrary that x, T(x), T^2(x), ..., T^{n-1}(x) are NOT linearly independent. Then there exist \{a_n\}, not all 0, such that a_0x+ a_1T(x)+\cdot\cdot\cdot+ a_{n-2}T^{n-2}(x)+ a_{n-}T^{n-1}(x)= 0. Apply T to both sides: a_0T(x)+ a_1T^2(x)+ \cdot\cdot\cdot+ a_{n-1}T^{n-1}(x)+ a_nT^n(x)= a_0T(x)+ a_1T^2(x)+ \cdot\cdot\cdot+ a_{n-1}T^{n-1}(x)= 0.

Applying T n-1 times, and repeatedly using the fact that T^n(x)= 0, we arrive at a_0T^{n-1}(x)= 0. If a_0\ne 0 it follows that T^{n-1}(x)= 0, a contradiction. If a_0= 0, we only need to apply T n-2 times to arrive at a_1T^{n-1}(x)= 0, etc.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K