Linear transformation representation with a matrix

In summary: To get the actual vector in B2 we simply express v in terms of B2 and multiply.In summary, to find the transformation of a vector expressed in a nonstandard basis, we first transform the basis vectors to the standard basis, then express the vector in terms of the transformed basis, and finally multiply by the transformation matrix to get the vector in the nonstandard basis.
  • #1
patricio2626
6
0

Homework Statement



For the linear transformation T: R2-->R2 defined by T(x1, X2) = (x1 + x2, 2x1 - x2), use the matrix A to find T(v), where v = (2, 1). B = {(1, 2), (-1, 1)} and B' = {(1, 0), (0, 1)}.

Homework Equations



T(v) is given, (x1+x2, 2x1-x2)

The Attempt at a Solution



Okay, I see that T(v) is simply (2+1, 2*2-1) --> (3, 3), but this matrix business has me a bit confused. From my textbook:

Using the basis B = {(1, 2), (-1, 1)}, you find that v = (2, 1) = 1(1, 2) - 1(-1, 1), which implies [v]B = [1 -1]T.

Now, where did this seemingly 'magical' 1 and -1 come from? The matrix relative to B and B' is obviously {(3, 0), (0, 3)}, but I have no idea where this [1 -1]T came from, nor what it is. I see that this is the coordinate matrix for (3, 3) relative to B, because I see that A*v in this case gives (3, 3), but have no idea how it was derived. Perhaps there's some small gem or concept here that I'm missing?
 
Last edited:
Physics news on Phys.org
  • #2
patricio2626 said:

Homework Statement



For the linear transformation T: R2-->R2 defined by T(x1, X2) = (x1 + x2, 2x1 - x2), use the matrix A to find T(v), where v = (2, 1). B = {(1, 2), (-1, 1)} and B' = {(1, 0), (0, 1)}.

Homework Equations



T(v) is given, (x1+x2, 2x1-x2)

The Attempt at a Solution



Okay, I see that T(v) is simply (2+1, 2*2-1) --> (3, 3), but this matrix business has me a bit confused. From my textbook:

Using the basis B = {(1, 2), (-1, 1)}, you find that v = (2, 1) = 1(1, 2) - 1(-1, 1), which implies [v]B = [1 -1]T.

Now, where did this seemingly 'magical' 1 and -1 come from? The matrix relative to B and B' is obviously {(3, 0), (0, -3)}, but I have no idea where this [1 -1]T came from, nor what it is. I see that this is the coordinate matrix for (3, 3) relative to B, because I see that A*v in this case gives (3, 3), but have no idea how it was derived. Perhaps there's some small gem or concept here that I'm missing?
The coordinates of a vector represent the constants that multiply the vectors in a basis.
In the standard basis for ##\mathbb{R}^2##, the vector ##\begin{bmatrix} 3 \\ 2\end{bmatrix}## means ##3\begin{bmatrix} 1 \\ 0\end{bmatrix} + 2\begin{bmatrix} 0\\ 1\end{bmatrix}##.
What you show as ##[v]_B## are the coordinates of basis B to result in ##\begin{bmatrix} 2 \\ 1 \end{bmatrix}##
 
  • Like
Likes patricio2626
  • #3
Mark44 said:
The coordinates of a vector represent the constants that multiply the vectors in a basis.
In the standard basis for ##\mathbb{R}^2##, the vector ##\begin{bmatrix} 3 \\ 2\end{bmatrix}## means ##3\begin{bmatrix} 1 \\ 0\end{bmatrix} + 2\begin{bmatrix} 0\\ 1\end{bmatrix}##.
What you show as ##[v]_B## are the coordinates of basis B to result in ##\begin{bmatrix} 2 \\ 1 \end{bmatrix}##

Okay, so

v = (2, 1) = 1(1, 2) - 1(-1, 1)

because
1*1 - 1*-1 = 2
1*2 - 1*1 = 1

So, the book simply skipped this piece of the explanation?
 
  • #4
patricio2626 said:
Okay, so

v = (2, 1) = 1(1, 2) - 1(-1, 1)

because
1*1 - 1*-1 = 2
1*2 - 1*1 = 1

So, the book simply skipped this piece of the explanation?

Yes.
 
  • Like
Likes patricio2626
  • #5
Thanks gents, this got me past this headscratcher, and then I had an on-the-fly tutor session yesterday and I get it now. To convert between nonstandard bases and find a transform for a vector expressed in the standard basis:

-To get the relative matrix we transform the first nonstandard base, say, B1, and express each column vector as a linear combination of our second nonstandard base, say, B2
-To get v expressed in terms of multiples of B1 we express v as a linear combination of B1.
-We then multiply the result by our transform matrix: Av, and this is expressed in terms of our coefficients for B2
 

Similar threads

Replies
26
Views
2K
Replies
1
Views
1K
Replies
10
Views
2K
Replies
3
Views
1K
Replies
4
Views
3K
Replies
4
Views
875
Back
Top