MHB Linear Transformations: Proving Rules & Demonstration

Ereisorhet
Messages
2
Reaction score
0
Good afternoon people.
So i have to demonstrate that the problems below are Linear Transformations, i have searched and i know i have to do it using a couple of "rules", it is a linear transformation if:
T(u+v) = T(u) + T(v) and T(Lu) = LT(u), the thing is that i really can't understand how to develop that and find the demonstration.
Thanks for reading.

View attachment 9033
 

Attachments

  • transfnob.PNG
    transfnob.PNG
    6.5 KB · Views: 144
Physics news on Phys.org
For (a), let u= \begin{pmatrix}u_1 \\ u_2 \\ u_3\end{pmatrix} and u= \begin{pmatrix}v_1 \\ v_2 \\ v_3\end{pmatrix}.

We are told that "T\begin{pmatrix}x \\ y \\ z \end{pmatrix}= \begin{pmatrix}1 \\ z \end{pmatrix} so Tu= \begin{pmatrix}1 \\ u_3\end{pmatrix} and Tv= \begin{pmatrix}1 \\ v_3\end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2 \\ u_3+ v_3 \end{pmatrix}.
But u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \\ u_3+ v_3 \end{pmatrix} so T(u+ v)= \begin{pmatrix}1 \\ u_3+ v_3\end{pmatrix}. Is T(u+ v)= Tu+ Tv?

For (b), let u= \begin{pmatrix}u_1 \\ u_2 \end{pmatrix} and v= \begin{pmatrix}v_1 \\ v_2 \end{pmatrix}. Tu= \begin{pmatrix} 2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_ 2 \end{pmatrix} and Tv= \begin{pmatrix} 2v_1+ v_2 \\ v_1- 3v_2 \\ v_1 \\ v_2 \end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2u_1+ u_2+ 2v_1+ v_2 \\ u_1- 3u_2+ v_2- 3v_2 \\ u_1+ v_2 \\ u_2+ v_2 \end{pmatrix}.
u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \end{pmatrix} so T(u+ v)= \begin{pmatrix}2(u_1+ v_1)+ (u_2+ v_2) \\ (u_1+ v_1)- 3(u_2+ v_3) \\ u_1+ v_1 \\ u_2+ v_2 \end{pmatrix}.

Do you see that those are the same, so T(u+ v)= Tu+ Tv?

Now we need to show that "T(Lu)= LTu" where L is a "scalar" (a number). Lu= \begin{pmatrix}Lu_1 \\ Lu_2 \end{pmatrix} so T(Lu)= \begin{pmatrix} 2Lu_1+ Lu_2 \\ Lu_1- 3Lu_2 \\ Lu_1 \\ Lu_2 \end{pmatrix} and LTu= L\begin{pmatrix}2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_2\end{pmatrix}= \begin{pmatrix}L(2u_1+ u_2) \\ L(u_1- 3u_2) \\ Lu_1 \\ Lu_2 \end{pmatrix}. Do you see that T(Lu)= LTu?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K