MHB Linear Transformations: Proving Rules & Demonstration

Click For Summary
The discussion focuses on demonstrating that specific functions are linear transformations by verifying two key properties: T(u+v) = T(u) + T(v) and T(Lu) = LT(u). For the first example, the transformation T applied to the sum of vectors u and v yields the same result as the sum of T applied to each vector, confirming the first property. In the second example, the calculations also show that T(u+v) equals Tu + Tv, thus satisfying the linearity condition. Lastly, the discussion confirms that T(Lu) equals LTu, fulfilling the requirement for scalar multiplication. The overall conclusion is that both transformations meet the criteria for linear transformations.
Ereisorhet
Messages
2
Reaction score
0
Good afternoon people.
So i have to demonstrate that the problems below are Linear Transformations, i have searched and i know i have to do it using a couple of "rules", it is a linear transformation if:
T(u+v) = T(u) + T(v) and T(Lu) = LT(u), the thing is that i really can't understand how to develop that and find the demonstration.
Thanks for reading.

View attachment 9033
 

Attachments

  • transfnob.PNG
    transfnob.PNG
    6.5 KB · Views: 147
Physics news on Phys.org
For (a), let u= \begin{pmatrix}u_1 \\ u_2 \\ u_3\end{pmatrix} and u= \begin{pmatrix}v_1 \\ v_2 \\ v_3\end{pmatrix}.

We are told that "T\begin{pmatrix}x \\ y \\ z \end{pmatrix}= \begin{pmatrix}1 \\ z \end{pmatrix} so Tu= \begin{pmatrix}1 \\ u_3\end{pmatrix} and Tv= \begin{pmatrix}1 \\ v_3\end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2 \\ u_3+ v_3 \end{pmatrix}.
But u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \\ u_3+ v_3 \end{pmatrix} so T(u+ v)= \begin{pmatrix}1 \\ u_3+ v_3\end{pmatrix}. Is T(u+ v)= Tu+ Tv?

For (b), let u= \begin{pmatrix}u_1 \\ u_2 \end{pmatrix} and v= \begin{pmatrix}v_1 \\ v_2 \end{pmatrix}. Tu= \begin{pmatrix} 2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_ 2 \end{pmatrix} and Tv= \begin{pmatrix} 2v_1+ v_2 \\ v_1- 3v_2 \\ v_1 \\ v_2 \end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2u_1+ u_2+ 2v_1+ v_2 \\ u_1- 3u_2+ v_2- 3v_2 \\ u_1+ v_2 \\ u_2+ v_2 \end{pmatrix}.
u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \end{pmatrix} so T(u+ v)= \begin{pmatrix}2(u_1+ v_1)+ (u_2+ v_2) \\ (u_1+ v_1)- 3(u_2+ v_3) \\ u_1+ v_1 \\ u_2+ v_2 \end{pmatrix}.

Do you see that those are the same, so T(u+ v)= Tu+ Tv?

Now we need to show that "T(Lu)= LTu" where L is a "scalar" (a number). Lu= \begin{pmatrix}Lu_1 \\ Lu_2 \end{pmatrix} so T(Lu)= \begin{pmatrix} 2Lu_1+ Lu_2 \\ Lu_1- 3Lu_2 \\ Lu_1 \\ Lu_2 \end{pmatrix} and LTu= L\begin{pmatrix}2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_2\end{pmatrix}= \begin{pmatrix}L(2u_1+ u_2) \\ L(u_1- 3u_2) \\ Lu_1 \\ Lu_2 \end{pmatrix}. Do you see that T(Lu)= LTu?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K