MHB Linear Transformations: Proving Rules & Demonstration

Ereisorhet
Messages
2
Reaction score
0
Good afternoon people.
So i have to demonstrate that the problems below are Linear Transformations, i have searched and i know i have to do it using a couple of "rules", it is a linear transformation if:
T(u+v) = T(u) + T(v) and T(Lu) = LT(u), the thing is that i really can't understand how to develop that and find the demonstration.
Thanks for reading.

View attachment 9033
 

Attachments

  • transfnob.PNG
    transfnob.PNG
    6.5 KB · Views: 136
Physics news on Phys.org
For (a), let u= \begin{pmatrix}u_1 \\ u_2 \\ u_3\end{pmatrix} and u= \begin{pmatrix}v_1 \\ v_2 \\ v_3\end{pmatrix}.

We are told that "T\begin{pmatrix}x \\ y \\ z \end{pmatrix}= \begin{pmatrix}1 \\ z \end{pmatrix} so Tu= \begin{pmatrix}1 \\ u_3\end{pmatrix} and Tv= \begin{pmatrix}1 \\ v_3\end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2 \\ u_3+ v_3 \end{pmatrix}.
But u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \\ u_3+ v_3 \end{pmatrix} so T(u+ v)= \begin{pmatrix}1 \\ u_3+ v_3\end{pmatrix}. Is T(u+ v)= Tu+ Tv?

For (b), let u= \begin{pmatrix}u_1 \\ u_2 \end{pmatrix} and v= \begin{pmatrix}v_1 \\ v_2 \end{pmatrix}. Tu= \begin{pmatrix} 2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_ 2 \end{pmatrix} and Tv= \begin{pmatrix} 2v_1+ v_2 \\ v_1- 3v_2 \\ v_1 \\ v_2 \end{pmatrix}. So Tu+ Tv= \begin{pmatrix}2u_1+ u_2+ 2v_1+ v_2 \\ u_1- 3u_2+ v_2- 3v_2 \\ u_1+ v_2 \\ u_2+ v_2 \end{pmatrix}.
u+ v= \begin{pmatrix}u_1+ v_1 \\ u_2+ v_2 \end{pmatrix} so T(u+ v)= \begin{pmatrix}2(u_1+ v_1)+ (u_2+ v_2) \\ (u_1+ v_1)- 3(u_2+ v_3) \\ u_1+ v_1 \\ u_2+ v_2 \end{pmatrix}.

Do you see that those are the same, so T(u+ v)= Tu+ Tv?

Now we need to show that "T(Lu)= LTu" where L is a "scalar" (a number). Lu= \begin{pmatrix}Lu_1 \\ Lu_2 \end{pmatrix} so T(Lu)= \begin{pmatrix} 2Lu_1+ Lu_2 \\ Lu_1- 3Lu_2 \\ Lu_1 \\ Lu_2 \end{pmatrix} and LTu= L\begin{pmatrix}2u_1+ u_2 \\ u_1- 3u_2 \\ u_1 \\ u_2\end{pmatrix}= \begin{pmatrix}L(2u_1+ u_2) \\ L(u_1- 3u_2) \\ Lu_1 \\ Lu_2 \end{pmatrix}. Do you see that T(Lu)= LTu?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top