Proving Linear Transformation of V with sin(x),cos(x) & ex

Click For Summary
SUMMARY

The discussion centers on proving that the differential operator T: V → V, defined as T(f) = df/dx, is a linear transformation within the subspace V spanned by the functions A = {e^x, sin(x), e^x cos(x), sin(x), cos(x)}. Participants emphasize the necessity of demonstrating that T maps functions in V to functions in V, and that it satisfies linearity conditions: T(f + g) = Tf + Tg and T(λf) = λT(f) for all f, g in V and λ in ℝ. The linearity of the differential operator is established, confirming that T is indeed a linear transformation.

PREREQUISITES
  • Understanding of linear transformations in vector spaces
  • Familiarity with differential calculus and the concept of differentiation
  • Knowledge of function spaces, specifically C(R)
  • Basic understanding of trigonometric functions and their properties
NEXT STEPS
  • Study the properties of linear operators in functional analysis
  • Learn about the span of a set of functions and its implications in vector spaces
  • Explore the application of the differential operator in various function spaces
  • Investigate the role of trigonometric functions in linear transformations
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in understanding the properties of linear transformations involving differentiable functions.

Lauren1234
Messages
26
Reaction score
3
TL;DR
Linear transformations prove including trig functions
Let A={ex,sin(x),excos(x),sin(x),cos(x)} and let V be the subspace of C(R) equal to span(A).

Define
T:V→V,f↦df/dx.
How do I prove that T is a linear transformation?
(I can do this with numbers but the trig is throwing me).
 
Physics news on Phys.org
Lauren1234 said:
Summary:: Linear transformations prove including trig functions

Let A={ex,sin(x),excos(x),sin(x),cos(x)} and let V be the subspace of C(R) equal to span(A).

Define
T:V→V,f↦df/dx.
How do I prove that T is a linear transformation?
(I can do this with numbers but the trig is throwing me).
:welcome:

How far can you get before you're stuck?

You might also like to use Latex:

https://www.physicsforums.com/help/latexhelp/

Then you can do things like:

##A = \{e^x, \cos x, \sin x \dots \}##

If you reply you'll see how I typed that.
 
To show something is a linear transformation, you need to show two things:

1) It's well defined, in the sense that it maps functions (or vectors) to functions (or vectors) of the correct type.

In this case, you have to check that ##T## maps functions in ##V## to functions in ##V##. If ##T## maps a function in ##V## to a function outside ##V## then it's not a mapping from ##V## to ##V##.

2) That it's linear. Which means that ##\forall \ f, g \in V## and ##\lambda \in \mathbb{R}##:

##T(f + g) = Tf + Tg##

##T(\lambda f) = \lambda T(f)##
 
  • Like
Likes   Reactions: Lauren1234
PeroK said:
To show something is a linear transformation, you need to show two things:

1) It's well defined, in the sense that it maps functions (or vectors) to functions (or vectors) of the correct type.

In this case, you have to check that ##T## maps functions in ##V## to functions in ##V##. If ##T## maps a function in ##V## to a function outside ##V## then it's not a mapping from ##V## to ##V##.

2) That it's linear. Which means that ##\forall \ f, g \in V## and ##\lambda \in \mathbb{R}##:

##T(f + g) = Tf + Tg##

##T(\lambda f) = \lambda T(f)##
Got you. With mine I am confused as to why I haven’t included the trig functions when proving this. Should I have? Also the bottom bit where I have the trig functions I’m not sure at all what I’m showing there or why I did it
 

Attachments

  • 7DC84EDB-8901-4B53-946A-DACB036018A6.jpeg
    7DC84EDB-8901-4B53-946A-DACB036018A6.jpeg
    31.7 KB · Views: 364
Lauren1234 said:
Got you. With mine I am confused as to why I haven’t included the trig functions when proving this. Should I have? Also the bottom bit where I have the trig functions I’m not sure at all what I’m showing there or why I did it

The differential operator is generally linear. That is to say is it a linear operator on the set of all differentiable functions. Although, if you're sharp you may see a subtlety here that is not mentioned by the proof you have quoted.

In any case, if it's linear on all functions then it must be linear on a subset of those functions. I.e. it must be linear on ##V##.
 
  • Like
Likes   Reactions: Lauren1234
PeroK said:
The differential operator is generally linear. That is to say is it a linear operator on the set of all differentiable functions. Although, if you're sharp you may see a subtlety here that is not mentioned by the proof you have quoted.

In any case, if it's linear on all functions then it must be linear on a subset of those functions. I.e. it must be linear on ##V##.
Right so I have to state that at the start so then I don’t need to include the trig functions? And that proves it is a linear transformation? Is what I’ve done a good solution?
 
Lauren1234 said:
Right so I have to state that at the start so then I don’t need to include the trig functions? And that proves it is a linear transformation? Is what I’ve done a good solution?

Well, the solution you posted is clearly out of a textbook of some sort.
 
  • Like
Likes   Reactions: Lauren1234
PeroK said:
Well, the solution you posted is clearly out of a textbook of some sort.
Well from a different help forum yeah. But I wanted to fully understand what I was doing and not just copy it down exact. Also from the bottom bit could I use this to verify if one of the functions is contain T(V) or is that something different again?
 
Lauren1234 said:
Well from a different help forum yeah. But I wanted to fully understand what I was doing and not just copy it down exact. Also from the bottom bit could I use this to verify if one of the functions is contain T(V) or is that something different again?
The bottom four lines show that ##T## maps ##V## into/onto ##V##. This can also be written as ##T(V) = V##. That's just another way of saying what I said in post #3:

PeroK said:
In this case, you have to check that ##T## maps functions in ##V## to functions in ##V##. If ##T## maps a function in ##V## to a function outside ##V## then it's not a mapping from ##V## to ##V##.
 
  • #10
PeroK said:
The bottom four lines show that ##T## maps ##V## into/onto ##V##. This can also be written as ##T(V) = V##. That's just another way of saying what I said in post #3:
Right ok so that just ties everything together to show why we can use a f(x) and g(x)? Sorry for the questions I’m very new to this and am finding the terms hard to get my head around
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K