Ah, okay. For the past week I have been trying to incorporate assumption C for the conservation of angular momentum m_p v'_t r', where m_p here is the mass of the particle, which is considered invariant so divided out for convenience, leaving the constant of motion P = v'_t r', which is measured the same locally at every shell depending upon how a particle is originally set in motion. Okay, so by reverse engineering the solution to the SC metric in another thread, I had gained P = v'_t r' = v'_t r / sqrt(1 - 2 m / r), which I took to mean r' = r / L, using the inferred radius by extending a local ruler at r all the way along r radially that is contracted radially by a factor of L = sqrt(1 - 2 m / r). One problem I have had with that, though, upon seeing that the quantities z, L / dr, and L_t / r are invariant for a particular shell (or coordinate independent), is that P is not invariant as it is currently expressed, although it should be.
I realize now that with the tangent motion of a particle, the local shell is not using some locally inferred radius r', but rather C' / (2 pi), where C' is the locally measured circumference of the shell at r. C' / (2 pi) ≠ r / L here of course, so with the distant observer inferring a circumference of the shell of C = 2 pi r, the local static observer with a tangent contraction of rulers of L_t, will physically measure C' = (2 pi r) / L_t by placing infinitesimal rulers end to end around the circumference, which is invariant. So to conserve the locally measured angular momentum of a particle, we would have
p'_angular = p'_t r' = [m_p v'_t / sqrt(1 - (v'/c)^2)] (C' / 2 pi) = constant
where from assumption B we gained sqrt(1 - (v'/c)^2) = z / K, so
= m_p v'_t K ((2 pi r / L_t) / 2 pi) / z
= m_p v'_t K (r / L_t) / z
and upon dividing out the invariant m_p and constant of motion K, we gain another constant of motion
P = v'_t r / (L_t z)
which still works out to P = v'_t r / sqrt(1 - 2 m / r) as found by reverse engineering SC, but is now invariant. This is the new corrected equation for assumption C. I will have to go back to a couple of other threads where I got this far and then got stuck at this point also.