Looking for book on Introduction to QFT

Click For Summary
SUMMARY

The forum discussion centers on recommendations for introductory textbooks on Quantum Field Theory (QFT). Key texts mentioned include "Quantum Field Theory in a Nutshell" by A. Zee, "Quantum Field Theory" by Lewis H. Ryder, and "An Introduction to Quantum Field Theory" by Michael Peskin and Daniel Schroeder. Participants emphasize the importance of mathematical rigor and clarity, suggesting that Srednicki's book may be challenging for beginners. Additional resources include lecture notes by Sidney Coleman and Brian F. Hatfield's "Quantum Field Theory of Point Particles and Strings," which are recommended for their mathematical approach.

PREREQUISITES
  • Understanding of classical field theory concepts, particularly scalar fields.
  • Familiarity with quantum mechanics, including operators and observables.
  • Basic knowledge of group theory as it relates to quantum mechanics.
  • Mathematical proficiency to engage with advanced texts and concepts.
NEXT STEPS
  • Read "Quantum Field Theory" by Lewis H. Ryder for a comprehensive introduction.
  • Explore "An Introduction to Quantum Field Theory" by Michael Peskin and Daniel Schroeder for detailed computational techniques.
  • Study lecture notes by Sidney Coleman for a recognized foundational approach to QFT.
  • Investigate Brian F. Hatfield's "Quantum Field Theory of Point Particles and Strings" for a mathematically rigorous perspective.
USEFUL FOR

Students and researchers in theoretical physics, particularly those seeking to understand the foundations and mathematical structure of Quantum Field Theory. This discussion is particularly beneficial for individuals transitioning from classical physics to quantum frameworks.

ods15
Messages
3
Reaction score
0
Hi. I'm studying (introduction to) QFT, and I'm really lost. If possible, I'd like a pointer to a good textbook on the subject. I'll give an example of my confusion with a question:

I think I've understood phi(x) as a classical scalar field, what it is and how to use it in a lagngian for classical field theory.

I'm totally lost on how it works in QFT. My understanding is that it is now an operator on the hilbert space of states, like X or P were in quantum mechanics. Actually, it is a whole group of operators - each phi(x) give a different operator for a different x

In quantum mechanics, the way the X operator worked, it was an observable, with eigenvectors being definite states and eigen values being the values of the observable...
What's going on with phi(x)? What is this operator? Why am I using it like I used the classical scalar field phi(x)?​

Before even getting into any of the ugly calculations and normalizations, I'm trying to understand the basic "rules and players". What are the different operators and functions, what do they depend on, what do their values means, how are they dynamical...

I'm very mathematically minded, so I'm hoping to find a book in that style. As an example - I really like Sean Carroll's General Relativity textbook.
 
Physics news on Phys.org
Quantum Field Theory in a Nutshell, A. Zee, Princeton Univ Press, 2003 (although, I believe there is a newer edition).
 
I actually skimmed it already and I thought it didn't go into detail much of definitions and how to go from classical field to quantum field, but maybe I didn't give it enough of a chance, I'll try it now, look more carefully, since it's such a short book anyway. Thanks!
 
If you are mathematically minded, grab hold of Hatfield "QFT of point particles and strings" (I feel like an echo chamber sometimes, always recommending this.) It nicely explains the basics in three different ways. Srednicki is also quite nice. Many people don't like it, but I would also recommend to have a look at Bob Klaubers qftfieldtheory-info site - he has an idiosyncratic take on many concepts (like vacuum fluctuations, where I am sure he is wrong...), but he explains the basics in a very didactic (and mathematical) way and he always states clearly when what he writes is not the standard interpretation.

Your confusion with the meaning of phi is possibly due to the fact that "What is phi in QFT" has two completely different answers:
In path integral formulation, phi is a classical field that has a value at each spacetime point. The path integral accounts for the quantum-mechanical superposition of different possible field values.
In canonical formulation, the phi's become operators because at least in principle, the classical phi(x) is an observable. The trouble (at least to my understanding for a long time) is that these operators of course have to act on quantum state vectors - usually the vacuum state; and almost nobody tells you what that is (Hatfield does in detail, Srednicki has an exercise on it, but without a solution that may not help you much and be frustrating).
I wrote a bit on that in this thread:
https://www.physicsforums.com/showthread.php?t=654697
 
I strongly recomment you to study Weinberg's book "The Quantum Theory of Fields, vol 1 - Foundations" . It requires some knowledge of group theory to get start and a good understanding of general QM formalism. You will see that quantum fields are a direct consequence of the CORRECT merging of QM and SR. In my opinion, the second quantization approach (which involves fields turning to operators- this is not the case of this book) is just a makeshift (like Dirac sea) in order to solve the paradoxes that appear when someone does relativistic wave-meachanics. Try Weinberg's method (if it is not too hard for you) and your confusion will probably disappear.
 
Shows how tastes differ - I hate the Weinberg-book because to me it seems never to get to the actual physical interpretation of the equations.
Probably the best idea is to read the first two chapters or so of several QFT-books and see which ones you like best.
 
Weinberg is nice if you already know the subject and want to deepen your understanding. For an introduction I think it's absolutely not the right book to start with. The same goes for Zee's book: that has some really nice things in it, but for an introduction it's not good, mainly because of the lack of rigour and computations. If you know the subject already a bit it's a very nice book to read, because it gives clarifications and insights which are not (or hard) to be found elsewhere.

I would recommend Ryder or Srednicki. I also found Peskin&Schroeder nice (that's the book I really used as my first introduction), they stress the second quantization and only at half the book introduce path integrals. It has a lot of computational details in it, but also give nice conceptual explanations.
 
  • #10
Glad to see I am not alone, I started the thread suggested above and am still very very confused.
I too, have no idea what the "rules and players" are.
It would be very helpful if someone gave us a direct list of posulates like the case in Shankar's principle of quantum mechanics.
For example do the X and P operators for particle states still apply?
How do I solve the basic problem of physcs, If I leave some multiparticle in A state, what happens to it some time T after in my frame??
 
  • #11
Thanks for the replies everyone!

HomogenousCow, I'm also glad to see I'm not the only one with these questions, your confusion seems very similar to mine. Interesting timing we had...

I've been recommended a few things by a few people, so here's my summary, in order of recommendation:

Lectures Notes:
0) http://isites.harvard.edu/fs/docs/icb.topic1088741.files/Quantum-Theory_Relativity.pdf (background)
1) http://arxiv.org/pdf/1110.5013v4 - Lecture notes by Sidney Coleman, recognized by some as the best available
2) http://isites.harvard.edu/icb/icb.do?keyword=k87741&pageid=icb.page507113
3) http://www.physics.utoronto.ca/~luke/PHY2403/References_files/lecturenotes.pdf

Books:
1. Srednicki (free pdf, can email for solutions)
2. Zee (nutshell)
3. Peskin & Schroeder
4. Weinberg - The Quantum Theory Of Fields Vol 1 Foundations

A more mathematical book - Brian F. Hatfield - Quantum Field Theory Of Point Particles And Strings
Somewhat non-standard book - Robert D. Klauber - http://www.quantumfieldtheory.info/
Another book - Lewis H. Ryder - Quantum Field Theory
Postulates for relativistic QFT are in section 3.5 of http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4282179/non11.pdfSo right now, my plan is to read (0) and (1), with filling in holes from 1. I haven't started yet, I'll report back how it goes...
 
Last edited:
  • #12
I'm looking for a book like shankars treatment of QM, starting from he vey bare bone structure to advanced stuff
 
  • #13
"For example do the X and P operators for particle states still apply?"
Not really.
Since you want to be relativistic, you have to treat t and x on the same footing. In QM, t is a "label", x is an operator. In QFT, you would either have to make the time an operator (difficult), or consider t and x as a label of a field.
Then you have two possibilities: Either you use the path integral and treat the field as a classical field, or you promote the field to an operator acting on states.

@ods
You mght also try Michael stones "The physics of quantum fields", that's also well-written.
 
  • #14
ods15 said:
Thanks for the replies everyone!

HomogenousCow, I'm also glad to see I'm not the only one with these questions, your confusion seems very similar to mine. Interesting timing we had...

I've been recommended a few things by a few people, so here's my summary, in order of recommendation:

Lectures Notes:
0) http://isites.harvard.edu/fs/docs/icb.topic1088741.files/Quantum-Theory_Relativity.pdf (background)
1) http://arxiv.org/pdf/1110.5013v4 - Lecture notes by Sidney Coleman, recognized by some as the best available
2) http://isites.harvard.edu/icb/icb.do?keyword=k87741&pageid=icb.page507113
3) http://www.physics.utoronto.ca/~luke/PHY2403/References_files/lecturenotes.pdf

Books:
1. Srednicki (free pdf, can email for solutions)
2. Zee (nutshell)
3. Peskin & Schroeder
4. Weinberg - The Quantum Theory Of Fields Vol 1 Foundations

A more mathematical book - Brian F. Hatfield - Quantum Field Theory Of Point Particles And Strings
Somewhat non-standard book - Robert D. Klauber - http://www.quantumfieldtheory.info/
Another book - Lewis H. Ryder - Quantum Field Theory
Postulates for relativistic QFT are in section 3.5 of http://uqu.edu.sa/files2/tiny_mce/pl...2179/non11.pdf


So right now, my plan is to read (0) and (1), with filling in holes from 1. I haven't started yet, I'll report back how it goes...

Do yourself a favor and read David Tong's lecture notes as a starting point. If you get lost in Srednicki, read Matthew Robinson's "Symmetry and the Standard Model".
 
Last edited by a moderator:
  • #15
Srednicki's book is very frustrating for a beginner who is studying it without any teachers help. Peskin or Ryder is good for starting QFT. Srednicki uses \phi^3 theory and there are no additional resources available on the net compatible with this book. You may find some class notes/slides which are not very helpful.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 23 ·
Replies
23
Views
11K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
28
Views
4K
  • · Replies 26 ·
Replies
26
Views
6K
Replies
18
Views
2K