Grimble
- 485
- 11
Now for seeing it all in one FoR:
Let us envisage three observers, A,B & C at rest in space.
They are situated in a straight line in the order ACB.
AC = CB = 4 light years, so AB = 8 ly
Also, because they are at rest in an inertial FoR the synchronised clocks that each possesses will be showing Proper time. (clock at rest in an inertial FoR is following its world line and is therefore measuring Proper time)
Imagine another two observers a & b each traveling at 0.8c. a is traveling from A towards C and b is traveling from B towards C.
And let us say that in our rest FoR they simultaneously pass A and B at time t0.
The observer at C will observe them both passing him at time t1 and t1 - t0 = 5 years.
Note that this has nothing to do with LT as all our observations and measurements are
made in the resting FoR of observers A,B & C.
The traveling observers, a and b, are detected at points A and C and points B and C respectively. From these observations A, B & C can determine that their speeds are equal and are each 0.8c.
Now what do a and b observe in their FoRs?
Well they too may consider them selves at rest in inertial FoRs. Therefore their clocks will also be showing proper time. And if they had imaginary synchronised clocks at rest with them and passing observer C at t0 we know that the proper distance between a and C at time t0 measured by a in a's FoR would be 4 proper light years.
Therefore a and b would each observe that they would travel 4 lt in 5 years at a speed of 0.8c.
It is only when the observers A, B and C use the measurements from a and b's FoRs that LT comes into play, for if C were to read a & b's clocks as they passed him at time t1 he would read time dilated times and distances - and calculate that a and b each traveled a distance of 2.4 (contracted) light years in a time of 3 (dilated) years.
Travelling at a speed of 2.4/3 = 0.8c.
Let us envisage three observers, A,B & C at rest in space.
They are situated in a straight line in the order ACB.
AC = CB = 4 light years, so AB = 8 ly
Also, because they are at rest in an inertial FoR the synchronised clocks that each possesses will be showing Proper time. (clock at rest in an inertial FoR is following its world line and is therefore measuring Proper time)
Imagine another two observers a & b each traveling at 0.8c. a is traveling from A towards C and b is traveling from B towards C.
And let us say that in our rest FoR they simultaneously pass A and B at time t0.
The observer at C will observe them both passing him at time t1 and t1 - t0 = 5 years.
Note that this has nothing to do with LT as all our observations and measurements are
made in the resting FoR of observers A,B & C.
The traveling observers, a and b, are detected at points A and C and points B and C respectively. From these observations A, B & C can determine that their speeds are equal and are each 0.8c.
Now what do a and b observe in their FoRs?
Well they too may consider them selves at rest in inertial FoRs. Therefore their clocks will also be showing proper time. And if they had imaginary synchronised clocks at rest with them and passing observer C at t0 we know that the proper distance between a and C at time t0 measured by a in a's FoR would be 4 proper light years.
Therefore a and b would each observe that they would travel 4 lt in 5 years at a speed of 0.8c.
It is only when the observers A, B and C use the measurements from a and b's FoRs that LT comes into play, for if C were to read a & b's clocks as they passed him at time t1 he would read time dilated times and distances - and calculate that a and b each traveled a distance of 2.4 (contracted) light years in a time of 3 (dilated) years.
Travelling at a speed of 2.4/3 = 0.8c.