Magnetic Field Due To Wire Of Semi-Circular Cross Section

AI Thread Summary
The discussion centers on calculating the magnetic field due to a wire with a semi-circular cross-section. The initial calculations involve integrating the current density over the wire's area, but participants point out that the wire should be treated as a thin arc rather than a volume, leading to confusion about the current distribution. The correct approach is to consider the current density as uniform along the arc, simplifying the integration to account for its geometry. Participants emphasize that the vertical component of the magnetic field should integrate to zero due to symmetry. The terminology used in the question is criticized for being misleading, as it refers to the wire as a "semicircular ring."
Aurelius120
Messages
269
Reaction score
24
Homework Statement
An infinite wire has semi-circular cross section with radius R. It carries current I. Then the magnitude of magnetic induction along its axis
Relevant Equations
Field due to infinite wire=##\frac{\mu_○I}{2\pi d}##
1000016287.jpg

I proceeded as follows
Current in sector ##d\theta=## is:
$$dI=\int_{x=0}^{x=R}{\frac{I}{\pi R^2/2}\times\frac{d\theta}{2\pi}\times 2\pi x dx}$$
Field due to sector ##d\theta## is therefore
$$dB=\int^{x=R}_{x=0}{\frac{\mu_○}{2\pi x}\times\frac{I}{\pi R^2/2}\times\frac{d\theta}{2\pi}\times 2\pi x dx}$$
$$\implies dB=\frac{\mu_○IR}{\pi^2R^2}d\theta$$
1000016289.jpg
For the entire wire:
$$B_{net}=\int^{\pi}_0{dB \cos(\theta-\pi/2) \hat i} + \int^{\pi}_0{dB \sin(\theta-\pi/2) \hat j}$$
Finally$$ B_{net}=\frac{2\mu_○I}{\pi^2R}$$

This is double the correct value? What did I do wrong ? Why does the book give this answer?
1000016289.jpg
 
Physics news on Phys.org
I don't understand what you are doing here: $$dI=\int_{x=0}^{x=R}{\frac{I}{\pi R^2/2}\times\frac{d\theta}{2\pi}\times 2\pi x dx}.$$ The semicircular ring of radius ##R## is very thin and there should be no ##\pi R^2## term to consider. Assume that the current is uniformly distributed over the ring. An arc ##ds=R ~d\theta## has current $$dI=\frac{I}{\pi R}ds=\frac{1}{\pi}I~d\theta.$$ Consider that as an infinitely long wire, find the two components of its contribution ##dB_x## and ##dB_y## at the center and integrate over ##\theta##. The vertical component is expected to integrate to zero by symmetry. That's how one adds vectors.
 
kuruman said:
I don't understand what you are doing here: $$dI=\int_{x=0}^{x=R}{\frac{I}{\pi R^2/2}\times\frac{d\theta}{2\pi}\times 2\pi x dx}.$$ The semicircular ring of radius ##R## is very thin and there should be no ##\pi R^2## term to consider.
The wire has semi-circular cross section. Therefore it has current distributed throughout its volume . It is a half cylinder with area ##\pi R^2/2## so current density is calculate by dividing current by area. So what is wrong with how I did it?
Why are you dividing current with circumference to find current density?
 
Aurelius120 said:
It is a half cylinder
The text says "semicircular ring", so just an arc of negligible width.
 
haruspex said:
The text says "semicircular ring", so just an arc of negligible width.
So how does that look like?
 
@Aurelius120 (just in case you're still not clear) based on the Post #1 diagram the conductor is shaped like this
gutter.gif

(but infinitely long and made of material of negligible thickness).

The use of the terms 'wire'and 'ring' in the question, is not ideal IMO.
 
  • Like
  • Love
Likes SammyS and Aurelius120
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top