Magnetic Field from Two Wires problem

AI Thread Summary
The discussion centers on calculating the net magnetic field at point L created by two parallel wires carrying current. The user initially applied the formula for the magnetic field from a single wire but mistakenly attempted to simply double the value for both wires, not accounting for their directional components. It was clarified that while the magnitudes of the fields are equal, their directions are opposite, requiring vector addition rather than scalar addition. The right-hand rule was suggested to determine the direction of the magnetic fields, and the user was encouraged to use trigonometry to resolve the components correctly. The conversation emphasizes the importance of vector analysis in magnetic field calculations.
Badger
Messages
28
Reaction score
0
Hi, can someone help me out? I've tried 5 different solution that I thought were definitely right and they all give me the same response: "Your answer is off by a multiplicative factor."

Homework Statement


189576A.jpg


Find the magnitude of the net magnetic field B_L created at point L by both wires.
Express your answer in terms of I, d, and appropriate constants.

Homework Equations


<br /> B_{\rm wire}=\frac{\mu_0 I}{2\pi d} ,<br />

The Attempt at a Solution


The question before this: there was a question:

Point L is located a distance d\sqrt 2 from the midpoint between the two wires. Find the magnitude of the magnetic field B_1L created at point L by wire 1.I put in the answer and got it right.
<br /> B_1L =\left({\mu}_{0}I\right)/\left[2{\pi}\sqrt{\left(d^{2}+\left(d\sqrt{2}\right)^{2}\right)}\right]<br />

So for the question at hand, I put in the same equation and multiplied by 2, figuring the net force would be the 2 separate forces added, which are equal since they both give the same direction of magnetic force and to do the same degree.

It didn't work.

So maybe it works like a loop since the top current is coming out at distance d and the bottom current is going in at distance d. d is now a radius.

so I tried
render.gif


Also wrong. Tried to input it in various ways, ^(3/2), cancel out the pi's. Still wrong, "my answer is off by a multiplicative factor."

Help would be awesome!
 
Last edited:
Physics news on Phys.org
Badger said:
So for the question at hand, I put in the same equation and multiplied by 2, figuring the net force would be the 2 separate forces added, which are equal since they both give the same direction of magnetic force and to do the same degree.
While the magnetic field from each wire does have the same magnitude, they point in different directions. So you can't just double the field of one to get the field of both. Add them like vectors (which they are).

While you have the correct formula for the magnitude of the field from a current carrying wire, what's the direction of that field? (Hint: Use the right hand rule.)
 
I think I get what your saying.

Point 1 @ L will have a up-right vector for B. Point 2 @ L will have a down-right vector for B. Both will be a hypetnuse of equal magninute. The y's will cancel. But I don't see how I determine the x-components that add up. I need angle an angle or at least another side to do some trig and I'm not sure how to go about it. Is it 180 degrees minus the angle created by the d and d(sqr-root(2))?
 
The direction of the field from wire 1 at L is perpendicular to the line from point 1 to L. The angle it makes with the horizontal (x-axis) is the same angle as you'll find in the upper corner of the right triangle formed by 1-K-L.
 
I still didnt get it... can you explain more?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top