Magnetic Field of an infinite current-carrying wire at a point

AI Thread Summary
The discussion focuses on the calculation of the magnetic field generated by an infinite current-carrying wire. The initial attempt presents a series of equations to derive the magnetic field, but the contributor expresses confusion over the disappearance of certain variables and the integration process. Clarifications are provided regarding the role of the distance variable \( r \) and the differential element \( d\vec{l} \), with emphasis on the importance of maintaining clarity in the mathematical representation. The conversation highlights the need for understanding symmetry in solving such physics problems. Ultimately, the thread underscores the complexities involved in deriving the magnetic field from an infinite wire.
BuggyWungos
Messages
13
Reaction score
1
Homework Statement
Find the magnetic field strength at point P (illustration below)
Relevant Equations
$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}\times\hat{r}}{r^2}$$
1722637413099.png

My attempt:

$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}r\sin{\theta}}{r^2}$$

$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}\sin{\theta}}{r}$$
$$ \sin{\theta} = \dfrac{y}{(x^2+y^2)^{1/2}}$$

$$ d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}}{r}\dfrac{y}{(x^2+y^2)^{1/2}}$$
$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}y}{r^2}$$


$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Iyd\vec{l}}{r^2}$$



This is what I determined to be the magnetic force at P due to ##d\vec{I}##


$$B(r) = \int_{-\infty}^{+\infty} d\vec{B}(r)$$


$$B(r) =\int_{-\infty}^{+\infty} \dfrac{\mu_0}{4\pi}\dfrac{Iyd\vec{l}}{r^2}$$


$$B(r) =\dfrac{\mu_0}{4\pi}\dfrac{Iy\vec{l}}{r^2} \Big|_{-\infty}^{+\infty}$$

I don't think my solution is solvable, it just becomes positive infinity minus negative infinity

My professor had a different solution to ##d\vec{B}(r)##

1722638606476.png


I don't understand where ##r## went and how ##dx## was brought forth in the second step :oldconfused:
 
Physics news on Phys.org
Please fix your LaTeX and make it legible.
BuggyWungos said:
My professor had a different solution to ##d\vec{B}(r)##

View attachment 349372

I don't understand where ##r## went and how ##dx## was brought forth in the second step :oldconfused:
##r## didn't go anywhere. It is still there as ##\sqrt{x^2+y^2}.##
##d\vec l## is an element in the direction of the current. Its magnitude in this case is ##dx##.
 
kuruman said:
Please fix you LaTeX and make it legible.

##r## didn't go anywhere. It is still there as ##\sqrt{x^2+y^2}.##
##d\vec l## is an element in the direction of the current. Its magnitude in this case is ##dx##.
I'm surprised you were able to understand all that before I fixed it.

I understand the second part of your comment, but where is ##\sqrt{x^2+y^2}## in the second step of my prof's solution?

Edit: I would have expected it to end up like ##d\vec{B}(r) = \dfrac{\mu_0}{4\pi} \dfrac{Idx\sin{\theta}}{r}##
 
@BuggyWungos, note that in the expression
##~~~~\dfrac {\mu_0}{4 \pi} \dfrac {I \vec {dl} \times \hat r}{r^2}##
##\hat r## is the unit vector in the r-direction; it’s magnitude is ##1##. Don't confuse it with ##\vec r##.
 
Steve4Physics said:
@BuggyWungos, note that in the expression
##~~~~\dfrac {\mu_0}{4 \pi} \dfrac {I \vec {dl} \times \hat r}{r^2}##
##\hat r## is the unit vector in the r-direction; it’s magnitude is ##1##. Don't confuse it with ##\vec r##.
:bow:
Thank you that's such a silly oversight, I even wrote it as r hat in latex and missed it lol
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top