Magnetic Field of an infinite current-carrying wire at a point

Click For Summary

Homework Help Overview

The discussion revolves around the magnetic field generated by an infinite current-carrying wire, focusing on the mathematical formulation and integration involved in calculating the magnetic field at a point. Participants are exploring the relationships between various parameters in the equations presented.

Discussion Character

  • Mathematical reasoning, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to derive the expression for the magnetic field using integration but expresses confusion regarding the treatment of variables and the limits of integration. Other participants question the clarity of the LaTeX formatting and the representation of certain variables, such as the unit vector and the distance r.

Discussion Status

Participants are actively engaging with the mathematical expressions and clarifying misunderstandings. Some guidance has been offered regarding the interpretation of the unit vector and the integration process, though there is no explicit consensus on the correct approach to the problem.

Contextual Notes

There are indications of confusion regarding the application of certain mathematical principles and the representation of variables in the context of the problem. The original poster expresses uncertainty about the validity of their solution and the steps taken by their professor.

BuggyWungos
Messages
13
Reaction score
1
Homework Statement
Find the magnetic field strength at point P (illustration below)
Relevant Equations
$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}\times\hat{r}}{r^2}$$
1722637413099.png

My attempt:

$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}r\sin{\theta}}{r^2}$$

$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}\sin{\theta}}{r}$$
$$ \sin{\theta} = \dfrac{y}{(x^2+y^2)^{1/2}}$$

$$ d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}}{r}\dfrac{y}{(x^2+y^2)^{1/2}}$$
$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Id\vec{l}y}{r^2}$$


$$d\vec{B}(r) = \dfrac{\mu_0}{4\pi}\dfrac{Iyd\vec{l}}{r^2}$$



This is what I determined to be the magnetic force at P due to ##d\vec{I}##


$$B(r) = \int_{-\infty}^{+\infty} d\vec{B}(r)$$


$$B(r) =\int_{-\infty}^{+\infty} \dfrac{\mu_0}{4\pi}\dfrac{Iyd\vec{l}}{r^2}$$


$$B(r) =\dfrac{\mu_0}{4\pi}\dfrac{Iy\vec{l}}{r^2} \Big|_{-\infty}^{+\infty}$$

I don't think my solution is solvable, it just becomes positive infinity minus negative infinity

My professor had a different solution to ##d\vec{B}(r)##

1722638606476.png


I don't understand where ##r## went and how ##dx## was brought forth in the second step :oldconfused:
 
Physics news on Phys.org
Please fix your LaTeX and make it legible.
BuggyWungos said:
My professor had a different solution to ##d\vec{B}(r)##

View attachment 349372

I don't understand where ##r## went and how ##dx## was brought forth in the second step :oldconfused:
##r## didn't go anywhere. It is still there as ##\sqrt{x^2+y^2}.##
##d\vec l## is an element in the direction of the current. Its magnitude in this case is ##dx##.
 
kuruman said:
Please fix you LaTeX and make it legible.

##r## didn't go anywhere. It is still there as ##\sqrt{x^2+y^2}.##
##d\vec l## is an element in the direction of the current. Its magnitude in this case is ##dx##.
I'm surprised you were able to understand all that before I fixed it.

I understand the second part of your comment, but where is ##\sqrt{x^2+y^2}## in the second step of my prof's solution?

Edit: I would have expected it to end up like ##d\vec{B}(r) = \dfrac{\mu_0}{4\pi} \dfrac{Idx\sin{\theta}}{r}##
 
  • Like
Likes   Reactions: berkeman
@BuggyWungos, note that in the expression
##~~~~\dfrac {\mu_0}{4 \pi} \dfrac {I \vec {dl} \times \hat r}{r^2}##
##\hat r## is the unit vector in the r-direction; it’s magnitude is ##1##. Don't confuse it with ##\vec r##.
 
Steve4Physics said:
@BuggyWungos, note that in the expression
##~~~~\dfrac {\mu_0}{4 \pi} \dfrac {I \vec {dl} \times \hat r}{r^2}##
##\hat r## is the unit vector in the r-direction; it’s magnitude is ##1##. Don't confuse it with ##\vec r##.
:bow:
Thank you that's such a silly oversight, I even wrote it as r hat in latex and missed it lol
 

Similar threads

Replies
10
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
705
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
Replies
7
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K