Magnitude of the Line Charge Density of a Power Line

AI Thread Summary
The discussion revolves around confusion regarding the correct formulation of electric potential difference related to line charge density in power lines. The original poster struggled with using LaTeX for their calculations and sought assistance. A suggestion was made to use a more accurate equation, specifically dV = -E dr, instead of the one initially used. The poster later expressed gratitude for the help received and noted that they figured out the issue. The conversation highlights the importance of proper mathematical representation in understanding electrical concepts.
frankifur
Messages
3
Reaction score
3
Homework Statement
The potential difference between the surface of a 3.1 cm - diameter power line and a point 1.4 m distance is 3.9 kV.
Relevant Equations
Delta V = - E Delta r
Phi = Integral (E A) = qenc/epsilon naught
Okay so I am a little confused as to where I made a mistake. I couldn't figure out how to program Latex into this website but I attached a file with the work I did and an explanation of my thought process along the way.
 

Attachments

  • Physics Homework Help.pdf
    Physics Homework Help.pdf
    119.7 KB · Views: 129
  • Screenshot 2023-02-13 at 3.34.33 PM.png
    Screenshot 2023-02-13 at 3.34.33 PM.png
    13.2 KB · Views: 91
Physics news on Phys.org
Welcome to PF.

frankifur said:
I couldn't figure out how to program Latex into this website
See the "LaTeX Guide" link at the lower left of the Edit window. :smile:
 
  • Like
Likes MatinSAR and frankifur
Hello @frankifur ,
:welcome: ##\qquad## !​

frankifur said:
confused as to where I made a mistake

You want to use something better than ##\Delta V = -E\,r ##. Closer to ## dV = -E\, dr ##.

##\ ##
 
  • Like
Likes MatinSAR and frankifur
I figured it out, thanks for the help and I appreciate how welcoming you all have been!
 
  • Like
Likes BvU, MatinSAR and berkeman
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top