Vanadium 50 said:
Let's take a strep back. After some thought, I think the best terminology is to define a neutrino as one that produces a (negative) lepton after a interaction (technically, a charged current interaction) and an anti-neutrino as one that produces a (positive) anti-lepton after a interaction.
If the neutrino is its own antiparticle, why is it important to have any distinction between neutrino and antineutrino?
Vanadium 50 said:
So, what does it mean for the neutrino and antineutrino to be the same particle? It means if I have any source of either neutrinos or antineutrinos, what I measure will be 50% neutrinos and 50% antineutrinos. Do we see that? No. That goes all the way back to the Reines-Cowan experiment. So the neutrino and antineutrino are different.
Can you explain the reasoning there? There would seem to be additional assumptions required. For example, it sounds like you are saying that if neutrinos and antineutrinos were the same particle, then Reines-Cowan would have detected twice as many inverse beta decays as they did. That is a similar argument to what I said in the other thread about SN 1987A, that we should see twice as many as we thought. But I am now questioning that, because I believe there is an impact on the calculation of the cross section, where if one assumes neutrinos and antineutrinos are different, one gets half the cross section for inverse beta decay than if they were the same.
This would seem to be required by reciprocity-- if we imagine a bath of neutrinos, antineutrinos, electrons, and positrons all encountering protons and neutrons in thermal equilibrium, all rates must equal their inverse rates. So let's say in the standard picture, electrons encountering protons have a rate R_en for creating neutrinos, and positrons encountering neutrons have a rate R_pa for creating antineutrinos. Those rates, whatever they are, will equal the rates for neutrinos and antineutrinos to create electrons and positrons, in this equilibrium. But now if we say neutrinos and antineutrinos are the same particle, R_en and R_pa won't be any different, because those are just processes that make neutrinos of whatever type they are allowed to make, it's no advantage to those processes whether there are two types, but only one helps, or just one type.
But if R_en and R_pa are the same either way, and they balance the inverse processes, then the inverse beta decays all must have half the cross sections if neutrinos are the same as antineutrinos, because when the processes are seen in that direction, there are now twice as many viable candidates for making it happen, yet the total rates for it to happen must be the same. So I don't think you can distinguish thinking you have a source of 50% neutrinos and 50% antineutrinos coupled with thinking you can only detect the antineutrinos, via a process that respects the principle of reciprocity, from thinking you have a source with 100% undifferentiated neutrino/antineutrinos and you can detect them all by that same process.
The kind of process that would allow us to observe a factor 2 different from what we expect is a process that we think can make both a neutrino or an antineutrino, but that has only half the chance to occur if neutrinos and antineutrinos are the same thing. But the problem is, the whole point of distinguishing neutrinos and antineutrinos is what you are saying, we would distinguish them by what they produce, i.e., we would explicitly not let their inverse processes produce either type of particle, so we have no access to the kind of rate that would be sensitive to this distinction. In short, I don't see how the Reines-Cowan experiment tells us neutrinos are different from antineutrinos.
Vanadium 50 said:
Now, a detour through theory. There are four fields: left-handed neutrino, right-handed neutrino, left-handed antineutrino and right-handed antineutrino. Left and right handed refers to the particle's chirality, which is hard to explain at I-level but is similar to helicity (spin dottend into momentum), the difference being that helicity is frame-dependent and chirality is defined to make it invariant. These are not physical particles; sometimes you will hear the term "Weyl fields".
The important thing is that in no theory can you "run past" a neutrino and make it an antineutrino.
The Higgs mechanism produces an interaction between the left and right handed neutrino feilds (which I will call "coupling: as shorthand in the future) to make a physical neutrino. Similarly, it can couple left-handed and right handed antineutrinos to make a physical antineutrino. These physical states have mass, and this is what we mean by the statement, "the Higgs mechanism gives fermions mass". This is called a "Dirac mass", and its what happens to electrons, quarks, etc.
That is a better explanation of the Higgs mechanism than I have ever seen (and no "Mexican hat" either)!
Vanadium 50 said:
However, because neutrinos are uncharged, they can also be connected the other way: left handed neutrino to right handed antineutrino and vice versa, (And more than one theory describes how this might happen) This is called a Majorana mass. But such a mass does not change the mixing: we covered that in the first three paragraphs: it predicts something different from what we actually observe.
Here you must be cautious, because you are on the brink of calling the Majorana Collaboration (
https://phys.org/news/2023-03-results-majorana-collaboration-neutrinoless-double-beta.html) a bunch of fools!
Vanadium 50 said:
So we're left with two possibilities:
1. We see antineutrinos, more or less as expected.
2. Our underdstanding of stellar collapse is grossly wrong (no neutronization), and QM is wrong, and SR is wrong, and all three are wrong in just the right way to conspire to give asignal that looks exactly like expected.
No, those are quite clearly
not the only possibilities, though I cannot state the case that a member of the Majorana Collaboration would provide here.