I had thought, maybe inaccurately connecting dots that shouldn't be connected, that a Majorana neutrino can come in a left-parity neutrino and a right-parity anti-neutrino form, and that the reason that we say that it is its own antiparticle is that with all other Standard Model fermions you have four possibilities:
Left parity particle, right parity particle, left parity antiparticle, and right parity antiparticle,
while in the case of a neutrino, you collapse those four combinations into two:
left parity particle and right parity antiparticle - which is indistinguishable from having a left parity particle and a right parity particle, and no antiparticles.
I also had understood, perhaps wrongly, that a left parity particle could transition to a right parity particle in some kind of interaction related to the Higgs mechanism (by which quarks, antiquarks, charged leptons, charged antileptons, W+ bosons, W- bosons, Z bosons, and Higgs bosons get their rest masses in the Standard Model) in some fashion.
I thought that transitions of the same particle from left parity to right parity and back were what drove the Higgs mechanism (seemingly implied, e.g.,
here, although I've seen more explicit illustrations to that effect)
Hence, in such a transition, a left parity neutrino could convert to a right parity neutrino (perhaps improperly called an antineutrino), which is why Majorana neutrinos don't conserve lepton number.
In contrast, in a Dirac neutrino scenario you have a left parity neutrino and a right parity antineutrino and one can't transition into the other, which is great for explaining that neutrinos and antineutrinos are different in their interactions with protons/neutrons due to lepton number conservation.
But, in the Dirac neutrino case, I had thought that this screws up the Higgs mechanism that requires transitions between a left parity and right parity fermion, and transitions between a left parity and right parity antifermion - which would necessitate sterile neutrinos because W and Z bosons don't interact with right handed particles or left handed antiparticles, neutrinos don't have electromagnetic charge, and neutrinos don't have strong force color charge (so they would interact only via gravity and Higgs mechanism related parity transitions).
Also, for some reason I've never really understood, the usual proposal is that the sterile counterparts of weak force interacting Dirac neutrinos (a.k.a. active neutrinos), unlike the parity counterparty of every other SM fermion which has the same mass regardless of its parity or matter/antimatter status, should have a different mass than the active neutrinos of opposite parity in a see saw mechanism.
Along the same lines it also isn't entirely obvious why Dirac and Majorana mass generation mechanism are the only options for neutrino mass.
Why can't we theorize that neutrinos acquire mass in some third way, call it "Wilma mass" or "Zappa mass" the conserves lepton number in some manner that does not require that there be a sterile neutrino - e.g. through W boson or Z boson interactions?
This would seem to be a rather modest theoretical tweak compared to creating a whole new set of three sterile neutrinos with three new mass parameters of their own and some sort of mixing parameters.
If you are making up new physics with new rules of physics solely to explain neutrino mass anyway, why not do it in some other fashion than the Dirac mass and Majorana mass options that we know and love (or know and hate)?
What do I have right? Where have I gone astray?