Manipulation of square root function

Click For Summary
SUMMARY

The discussion focuses on solving the equation $\dfrac {\sqrt {3-3x}+\sqrt {x+6}}{\sqrt {1-4x}+\sqrt {2x+8}}=\dfrac {\sqrt {3-3x}-\sqrt {x+6}}{\sqrt {1-4x}-\sqrt {2x+8}}$. Participants Albert, Soroban, and Kaliprasad successfully provided correct solutions for the variable $x$. The manipulation of square root functions is central to deriving the solution, emphasizing the importance of algebraic techniques in solving rational equations.

PREREQUISITES
  • Understanding of algebraic manipulation of square roots
  • Familiarity with rational equations
  • Knowledge of solving equations involving variables under square roots
  • Basic skills in isolating variables in complex fractions
NEXT STEPS
  • Study techniques for solving rational equations involving square roots
  • Learn about the properties of square root functions and their manipulations
  • Explore advanced algebraic methods for isolating variables
  • Practice solving similar equations with varying complexity
USEFUL FOR

Students, educators, and anyone interested in mastering algebraic techniques for solving equations involving square roots and rational expressions.

Albert1
Messages
1,221
Reaction score
0
$\dfrac {\sqrt {3-3x}+\sqrt {x+6}}{\sqrt {1-4x}+\sqrt {2x+8}}=\dfrac {\sqrt {3-3x}-\sqrt {x+6}}{\sqrt {1-4x}-\sqrt {2x+8}}$
please find :$x$
 
Mathematics news on Phys.org
Hello, Albert!

$\dfrac {\sqrt {3-3x}+\sqrt {x+6}}{\sqrt {1-4x}+\sqrt {2x+8}}\:=\:\dfrac {\sqrt {3-3x}-\sqrt {x+6}}{\sqrt {1-4x}-\sqrt {2x+8}}$

$\text{Solve for }x.$
Note that:

. . $\begin{Bmatrix}1-4x \:\ge\:0 & \Rightarrow & x\:\le\:\frac{1}{4}\\ 2x+8 \:\ge\:0 & \Rightarrow & x\:\ge \:\text{-}4 \end{Bmatrix}\;\;\;-4 \:\le x \:\le\:\frac{1}{4}$
We have: .\frac{a+b}{c+d} \:=\:\frac{a-b}{c+d}

. . which simplifies to: .$ad \,=\,bc$

That is: .$\sqrt{3-3x}\cdot\sqrt{2x+8} \:=\:\sqrt{x+6}\cdot\sqrt{1-4x}$

Then: .$(3-3x)(2x+8) \:=\: (x+6)(1-4x)$

. . $6x+24-6x^2-24x \;=\;x-4x^2+6-24x $

. . $2x^2-5x-18\:=\:0\quad\Rightarrow\quad (2x-9)(x+2) \:=\:0 $But $x = \tfrac{9}{2}$ is not in the domain.

Therefore, the only root is: .$x = \text{-}2.$
 
Last edited by a moderator:
if $\frac{a}{b}= \frac{c}{d}$ then both = $\frac{(a+c)}{(b + d)}$ also $\frac{(a-c)}{(b - d)}$

so if ($\frac{(a+c)}{(b + d)}$ =$\frac{(a-c)}{(b - d)}$
then$\frac{a}{b}= \frac{c}{d}$
taking $a = \sqrt{(3- 3x)}$ $b = \sqrt{(x+6)}$ $c = \sqrt{(1-4x)}$ $d=\sqrt{(2x+8)}$
we get $\sqrt{\frac{(3-3x)}{(x+6)}}$ = $\sqrt{\frac{(4x-1)}{(2x+8)}}$

square both sides and get
(3x-3)(2x+8) = (x+6)(4x-1)
expand to get $2x^2 – 5x – 18 = 0$
(x+2)(2x-9) = 0
x = - 2 or 9/2
x = 9/2 is erroneous so x = -2 is the solution
 
Thanks Soroban and Kaliprasad , both of your answers are correct :)
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K