Manipulation of square root function

Click For Summary

Discussion Overview

The discussion revolves around solving the equation involving square root functions. Participants are tasked with finding the value of \(x\) that satisfies the given equation, which includes multiple square root expressions.

Discussion Character

  • Homework-related

Main Points Raised

  • Post 1 presents the equation to be solved for \(x\), involving square roots of linear expressions.
  • Post 2 reiterates the equation and requests a solution for \(x\).
  • Post 3 acknowledges contributions from other participants, indicating that their answers are correct without specifying the solutions.

Areas of Agreement / Disagreement

Participants appear to agree that the answers provided by Soroban and Kaliprasad are correct, but the specific solutions or methods used are not detailed in the discussion.

Contextual Notes

The discussion does not clarify any assumptions or conditions under which the equation holds, nor does it address any potential restrictions on the values of \(x\) that could arise from the square root functions.

Albert1
Messages
1,221
Reaction score
0
$\dfrac {\sqrt {3-3x}+\sqrt {x+6}}{\sqrt {1-4x}+\sqrt {2x+8}}=\dfrac {\sqrt {3-3x}-\sqrt {x+6}}{\sqrt {1-4x}-\sqrt {2x+8}}$
please find :$x$
 
Mathematics news on Phys.org
Hello, Albert!

$\dfrac {\sqrt {3-3x}+\sqrt {x+6}}{\sqrt {1-4x}+\sqrt {2x+8}}\:=\:\dfrac {\sqrt {3-3x}-\sqrt {x+6}}{\sqrt {1-4x}-\sqrt {2x+8}}$

$\text{Solve for }x.$
Note that:

. . $\begin{Bmatrix}1-4x \:\ge\:0 & \Rightarrow & x\:\le\:\frac{1}{4}\\ 2x+8 \:\ge\:0 & \Rightarrow & x\:\ge \:\text{-}4 \end{Bmatrix}\;\;\;-4 \:\le x \:\le\:\frac{1}{4}$
We have: .\frac{a+b}{c+d} \:=\:\frac{a-b}{c+d}

. . which simplifies to: .$ad \,=\,bc$

That is: .$\sqrt{3-3x}\cdot\sqrt{2x+8} \:=\:\sqrt{x+6}\cdot\sqrt{1-4x}$

Then: .$(3-3x)(2x+8) \:=\: (x+6)(1-4x)$

. . $6x+24-6x^2-24x \;=\;x-4x^2+6-24x $

. . $2x^2-5x-18\:=\:0\quad\Rightarrow\quad (2x-9)(x+2) \:=\:0 $But $x = \tfrac{9}{2}$ is not in the domain.

Therefore, the only root is: .$x = \text{-}2.$
 
Last edited by a moderator:
if $\frac{a}{b}= \frac{c}{d}$ then both = $\frac{(a+c)}{(b + d)}$ also $\frac{(a-c)}{(b - d)}$

so if ($\frac{(a+c)}{(b + d)}$ =$\frac{(a-c)}{(b - d)}$
then$\frac{a}{b}= \frac{c}{d}$
taking $a = \sqrt{(3- 3x)}$ $b = \sqrt{(x+6)}$ $c = \sqrt{(1-4x)}$ $d=\sqrt{(2x+8)}$
we get $\sqrt{\frac{(3-3x)}{(x+6)}}$ = $\sqrt{\frac{(4x-1)}{(2x+8)}}$

square both sides and get
(3x-3)(2x+8) = (x+6)(4x-1)
expand to get $2x^2 – 5x – 18 = 0$
(x+2)(2x-9) = 0
x = - 2 or 9/2
x = 9/2 is erroneous so x = -2 is the solution
 
Thanks Soroban and Kaliprasad , both of your answers are correct :)
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K