Markov Process Limit: Calculating $u_k$ as a Function of $a,b$

Click For Summary
SUMMARY

The discussion focuses on the Markov process defined by the transition matrix \( P = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix} \) and the calculation of \( u_k \) as a function of parameters \( a \) and \( b \). For \( P \) to be a valid Markov process, the conditions \( 0 \leq a, b \leq 1 \) must hold, ensuring non-negativity and that the columns sum to one. The limit of \( u_k \) as \( k \rightarrow \infty \) exists if \( 0 < a - b < 1 \), with the eigenvalue analysis revealing that if \( |\lambda_2| < 1 \), a finite limit is guaranteed. The discussion also highlights the importance of the trace of \( P \) in determining the behavior of the process.

PREREQUISITES
  • Understanding of Markov processes and transition matrices
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of matrix operations and properties
  • Basic concepts of stochastic matrices
NEXT STEPS
  • Explore the properties of eigenvalues in Markov chains
  • Learn about the implications of stochastic matrices in probability theory
  • Study the convergence criteria for Markov processes
  • Investigate the role of the trace of a matrix in determining its eigenvalues
USEFUL FOR

Mathematicians, statisticians, and data scientists interested in Markov processes, eigenvalue analysis, and stochastic modeling will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the equation \begin{equation*}u_{k+1}=\begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}u_k \ \text{ with } \ u_0=\begin{pmatrix}1 \\1 \end{pmatrix}\end{equation*}

For which values of $a$ and $b$ is the above equation a Markov process?
Calculate $u_k$ as a function of $a,b$.
Which conditions do $a,b$ have to satisfy so that $u_k$ approximates a finite limit as $k\rightarrow \infty$ and which is that limit? I have done the following:

So that the equation is a Markov process the element of the matrix must be non-negativ and the sum of the colums must be $1$.
So, we get $0\leq a,b\leq 1$.

\begin{align*}&u_0=\begin{pmatrix}1 \\ 1\end{pmatrix} \\ &u_1=\begin{pmatrix}a+b \\ 2-(a+b)\end{pmatrix} \\ &u_2=\begin{pmatrix}a^2+2b-b^2 \\ 2-(a^2+2b-b^2)\end{pmatrix}\\ &u_3=\begin{pmatrix}a^3+2ab-b^2a+2b-a^2b-2b^2+b^3 \\ 2-(a^3+2ab-b^2a+2b-a^2b-2b^2+b^3)\end{pmatrix} \\ & \ldots\end{align*}

Let $u_k=(x_k,y_k)^T$ then it holds that \begin{align*}&x_k+y_k=2 \\ & x_{k+1}=(a−b)x_k+2b \\ & x0=y0=1\end{align*}

We have that \begin{align*} x_{k+1}&=(a−b)x_k+2b \\ & =(a-b)^2x_{k-1}+2b(1-b)+2b \\ & = (a-b)^3x_{k-2}+2b(a-b)^2+2b(a-b)+2b \\ & =\ldots \\ & = (a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{align*}

Therefore, we get \begin{equation*}u_k=\begin{pmatrix}x_k \\ y_k\end{pmatrix}=\begin{pmatrix}(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\\ 2-(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{pmatrix} \end{equation*}

So that $u_k$ approximates a finite limit as $k\rightarrow \infty$ it must be $0<a-b<1$.

Is everything correct? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We consider the equation \begin{equation*}u_{k+1}=\begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}u_k \ \text{ with } \ u_0=\begin{pmatrix}1 \\1 \end{pmatrix}\end{equation*}

For which values of $a$ and $b$ is the above equation a Markov process?
Calculate $u_k$ as a function of $a,b$.
Which conditions do $a,b$ have to satisfy so that $u_k$ approximates a finite limit as $k\rightarrow \infty$ and which is that limit?

let's call your transition matrix

$P := \begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}$

it's customary in probability theory to make $P$ row stochastics (rows sum to one, nonnegative entries) not column stochastic, but in principle there's no issue with being column stochastic. You've stated the conditions for being column stochastic just fine. Note with $\mathbf 1$ the ones vector (which $\mathbf u_0$ is for some reason), being column stochastic means

$\mathbf 1^T P = \mathbf 1^T$
or
$P^T \mathbf 1 = \mathbf 1$

so the ones vector is a (left) eigenvector with eigenvalue of 1.

We'll call the eigenvalue $\lambda_1 = 1$, which is of course an eigenvalue of $P$ and $P^T$
mathmari said:
... Therefore, we get \begin{equation*}u_k=\begin{pmatrix}x_k \\ y_k\end{pmatrix}=\begin{pmatrix}(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\\ 2-(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{pmatrix} \end{equation*}

So that $u_k$ approximates a finite limit as $k\rightarrow \infty$ it must be $0<a-b<1$.

Is everything correct? (Wondering)

I appreciate all the work, but the conclusion doesn't follow. I see no problem with e.g. $b= 0.7$ and $a = 0.2$, you'll still get a valid limit.

A much simpler approach is to make use of trace, so

$\text{tr} \big(P\big) = a + 1-b = \lambda_1 + \lambda_2 = 1 +\lambda_2$

so
$a -b = \lambda_2$

if $\big \vert \lambda_2 \big \vert \lt 1$, then you must get a finite limit (why?). You should be able to find the single (right) eigenvector in the nullspace of $\big(P-I\big)$ and from here figure out the limiting value of $\mathbf u_k$.

If $\lambda_2 = -1$ you have periodic behavior (period of 2) and no limit can exist; in this case the matrix is a pairwise swap permutation matrix. The special case of $\lambda_2 = 1$ remains to be considered and you can check that this implies $P$ is the identity matrix, which is no problem for limits...
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K