MHB Markov Process Limit: Calculating $u_k$ as a Function of $a,b$

Click For Summary
The discussion centers on the conditions for the matrix equation \( u_{k+1} = \begin{pmatrix} a & b \\ 1-a & 1-b \end{pmatrix} u_k \) to represent a Markov process, requiring non-negative entries and column sums equal to one, leading to \( 0 \leq a, b \leq 1 \). The calculation of \( u_k \) reveals that it approaches a finite limit as \( k \to \infty \) if \( 0 < a - b < 1 \). However, an alternative perspective suggests that the trace of the matrix can be used to determine the existence of a limit, emphasizing the importance of the eigenvalue conditions. If the second eigenvalue \( \lambda_2 \) satisfies \( |\lambda_2| < 1 \), a finite limit exists, while specific cases like \( \lambda_2 = -1 \) indicate periodic behavior without a limit. Ultimately, the discussion highlights the complexity of determining the limiting behavior of \( u_k \) based on the properties of the transition matrix.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the equation \begin{equation*}u_{k+1}=\begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}u_k \ \text{ with } \ u_0=\begin{pmatrix}1 \\1 \end{pmatrix}\end{equation*}

For which values of $a$ and $b$ is the above equation a Markov process?
Calculate $u_k$ as a function of $a,b$.
Which conditions do $a,b$ have to satisfy so that $u_k$ approximates a finite limit as $k\rightarrow \infty$ and which is that limit? I have done the following:

So that the equation is a Markov process the element of the matrix must be non-negativ and the sum of the colums must be $1$.
So, we get $0\leq a,b\leq 1$.

\begin{align*}&u_0=\begin{pmatrix}1 \\ 1\end{pmatrix} \\ &u_1=\begin{pmatrix}a+b \\ 2-(a+b)\end{pmatrix} \\ &u_2=\begin{pmatrix}a^2+2b-b^2 \\ 2-(a^2+2b-b^2)\end{pmatrix}\\ &u_3=\begin{pmatrix}a^3+2ab-b^2a+2b-a^2b-2b^2+b^3 \\ 2-(a^3+2ab-b^2a+2b-a^2b-2b^2+b^3)\end{pmatrix} \\ & \ldots\end{align*}

Let $u_k=(x_k,y_k)^T$ then it holds that \begin{align*}&x_k+y_k=2 \\ & x_{k+1}=(a−b)x_k+2b \\ & x0=y0=1\end{align*}

We have that \begin{align*} x_{k+1}&=(a−b)x_k+2b \\ & =(a-b)^2x_{k-1}+2b(1-b)+2b \\ & = (a-b)^3x_{k-2}+2b(a-b)^2+2b(a-b)+2b \\ & =\ldots \\ & = (a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{align*}

Therefore, we get \begin{equation*}u_k=\begin{pmatrix}x_k \\ y_k\end{pmatrix}=\begin{pmatrix}(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\\ 2-(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{pmatrix} \end{equation*}

So that $u_k$ approximates a finite limit as $k\rightarrow \infty$ it must be $0<a-b<1$.

Is everything correct? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We consider the equation \begin{equation*}u_{k+1}=\begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}u_k \ \text{ with } \ u_0=\begin{pmatrix}1 \\1 \end{pmatrix}\end{equation*}

For which values of $a$ and $b$ is the above equation a Markov process?
Calculate $u_k$ as a function of $a,b$.
Which conditions do $a,b$ have to satisfy so that $u_k$ approximates a finite limit as $k\rightarrow \infty$ and which is that limit?

let's call your transition matrix

$P := \begin{pmatrix}a & b \\ 1-a & 1-b\end{pmatrix}$

it's customary in probability theory to make $P$ row stochastics (rows sum to one, nonnegative entries) not column stochastic, but in principle there's no issue with being column stochastic. You've stated the conditions for being column stochastic just fine. Note with $\mathbf 1$ the ones vector (which $\mathbf u_0$ is for some reason), being column stochastic means

$\mathbf 1^T P = \mathbf 1^T$
or
$P^T \mathbf 1 = \mathbf 1$

so the ones vector is a (left) eigenvector with eigenvalue of 1.

We'll call the eigenvalue $\lambda_1 = 1$, which is of course an eigenvalue of $P$ and $P^T$
mathmari said:
... Therefore, we get \begin{equation*}u_k=\begin{pmatrix}x_k \\ y_k\end{pmatrix}=\begin{pmatrix}(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\\ 2-(a-b)^{k+1}x_0+2b\left (\sum_{i=0}^k(a-b)^i\right )\end{pmatrix} \end{equation*}

So that $u_k$ approximates a finite limit as $k\rightarrow \infty$ it must be $0<a-b<1$.

Is everything correct? (Wondering)

I appreciate all the work, but the conclusion doesn't follow. I see no problem with e.g. $b= 0.7$ and $a = 0.2$, you'll still get a valid limit.

A much simpler approach is to make use of trace, so

$\text{tr} \big(P\big) = a + 1-b = \lambda_1 + \lambda_2 = 1 +\lambda_2$

so
$a -b = \lambda_2$

if $\big \vert \lambda_2 \big \vert \lt 1$, then you must get a finite limit (why?). You should be able to find the single (right) eigenvector in the nullspace of $\big(P-I\big)$ and from here figure out the limiting value of $\mathbf u_k$.

If $\lambda_2 = -1$ you have periodic behavior (period of 2) and no limit can exist; in this case the matrix is a pairwise swap permutation matrix. The special case of $\lambda_2 = 1$ remains to be considered and you can check that this implies $P$ is the identity matrix, which is no problem for limits...
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K