MHB Mass 50kg Box Slows to Halt on Friction: 14.5m Distance

Click For Summary
A 50 kg box slows from 10 m/s on rough ground with a friction coefficient of 0.3 and an initial tension of 25N. The box travels a total distance of 14.5m before stopping due to friction alone after the string breaks. Calculations show that the box traveled 13m before the string broke, with the applied force acting in the same direction as friction. The problem is noted as poorly worded, leading to confusion in the calculations. The final distance traveled before the string broke is confirmed to be 13m.
Shah 72
MHB
Messages
274
Reaction score
0
A box of mass 50 kg is slowing down from 10 m/s on a rough horizontal ground. The coefficient of friction between the box and the ground is 0.3. To start with, the box is being slowed by a string providing a tension of 25N horizontally. Then the string breaks and the box comes to a halt under friction alone after a total distance of 14.5m. Find how far the box traveled before the string broke.
 
Mathematics news on Phys.org
show your work on this problem, please
 
skeeter said:
show your work on this problem, please
I don't understand how to approach this problem.
m=50kg, it says slowing down from 10m/s, so it's decelerating, u=10m/s
Using F=m×a, 25-(0.3×500)=50a, a=-2.5m/s^2. By taking the total distance traveled under friction, I get v=5.24m/s, so making the assumption that the box comes to halt instantly, I got s= 1.05m when subtracted from total distance I get 13.5 m but the ans is 13m
 
To get 13m as the solution, the 25N applied force acts in the same direction as the friction force before the string breaks.

$v_f^2 = 10^2 - 2(3.5) \cdot \Delta x_1 \implies v_f^2 = 100 - 7\Delta x_1$

after the string breaks ...

$0^2 = (100 - 7\Delta x_1) - 2(3) \cdot \Delta x_2$

$\Delta x_2 = 14.5 - \Delta x_1 \implies 100 - 7\Delta x_1 = 6(14.5 - \Delta x_1) \implies \Delta x_1 = 13 \, m$

poorly worded problem. imho.
 
skeeter said:
To get 13m as the solution, the 25N applied force acts in the same direction as the friction force before the string breaks.

$v_f^2 = 10^2 - 2(3.5) \cdot \Delta x_1 \implies v_f^2 = 100 - 7\Delta x_1$

after the string breaks ...

$0^2 = (100 - 7\Delta x_1) - 2(3) \cdot \Delta x_2$

$\Delta x_2 = 14.5 - \Delta x_1 \implies 100 - 7\Delta x_1 = 6(14.5 - \Delta x_1) \implies \Delta x_1 = 13 \, m$

poorly worded problem. imho.
Thank you so so much!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 10 ·
Replies
10
Views
5K