Mass 50kg Box Slows to Halt on Friction: 14.5m Distance

  • Context: MHB 
  • Thread starter Thread starter Shah 72
  • Start date Start date
  • Tags Tags
    Friction Mechanics
Click For Summary
SUMMARY

A 50 kg box decelerates from an initial speed of 10 m/s on a rough horizontal surface with a coefficient of friction of 0.3. The box is initially slowed by a 25N tension force, which acts in the same direction as the friction force before the string breaks. The total distance traveled before coming to a halt is 14.5m, with the box traveling 13m before the string broke. The calculations confirm that the box's deceleration is influenced by both the tension and friction forces.

PREREQUISITES
  • Understanding of Newton's Second Law (F = ma)
  • Knowledge of kinematic equations for uniformly accelerated motion
  • Friction concepts, specifically coefficient of friction
  • Basic algebra for solving equations
NEXT STEPS
  • Study the application of Newton's laws in real-world scenarios
  • Learn about kinematic equations and their derivations
  • Explore the effects of different coefficients of friction on motion
  • Investigate tension forces in various mechanical systems
USEFUL FOR

Physics students, educators, and anyone interested in understanding dynamics and friction in motion problems.

Shah 72
MHB
Messages
274
Reaction score
0
A box of mass 50 kg is slowing down from 10 m/s on a rough horizontal ground. The coefficient of friction between the box and the ground is 0.3. To start with, the box is being slowed by a string providing a tension of 25N horizontally. Then the string breaks and the box comes to a halt under friction alone after a total distance of 14.5m. Find how far the box traveled before the string broke.
 
Mathematics news on Phys.org
show your work on this problem, please
 
skeeter said:
show your work on this problem, please
I don't understand how to approach this problem.
m=50kg, it says slowing down from 10m/s, so it's decelerating, u=10m/s
Using F=m×a, 25-(0.3×500)=50a, a=-2.5m/s^2. By taking the total distance traveled under friction, I get v=5.24m/s, so making the assumption that the box comes to halt instantly, I got s= 1.05m when subtracted from total distance I get 13.5 m but the ans is 13m
 
To get 13m as the solution, the 25N applied force acts in the same direction as the friction force before the string breaks.

$v_f^2 = 10^2 - 2(3.5) \cdot \Delta x_1 \implies v_f^2 = 100 - 7\Delta x_1$

after the string breaks ...

$0^2 = (100 - 7\Delta x_1) - 2(3) \cdot \Delta x_2$

$\Delta x_2 = 14.5 - \Delta x_1 \implies 100 - 7\Delta x_1 = 6(14.5 - \Delta x_1) \implies \Delta x_1 = 13 \, m$

poorly worded problem. imho.
 
skeeter said:
To get 13m as the solution, the 25N applied force acts in the same direction as the friction force before the string breaks.

$v_f^2 = 10^2 - 2(3.5) \cdot \Delta x_1 \implies v_f^2 = 100 - 7\Delta x_1$

after the string breaks ...

$0^2 = (100 - 7\Delta x_1) - 2(3) \cdot \Delta x_2$

$\Delta x_2 = 14.5 - \Delta x_1 \implies 100 - 7\Delta x_1 = 6(14.5 - \Delta x_1) \implies \Delta x_1 = 13 \, m$

poorly worded problem. imho.
Thank you so so much!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 10 ·
Replies
10
Views
5K