Mass slipping on a moving inclined plane

AI Thread Summary
The discussion focuses on determining the minimum and maximum acceleration required for body A to remain stationary on an inclined plane of body B, considering the angle of slope α and the coefficient of friction μ. Participants express confusion over the equations used to derive acceleration and question the correctness of certain terms related to the normal force and friction. It is noted that if the acceleration is too small, body A will slide down the incline, while excessive acceleration could cause body A to detach from the plane. The conversation highlights the need for clarification on the equations and their implications for different slope angles, particularly at 0° and 90°. Overall, the thread emphasizes the complexities involved in analyzing motion on an inclined plane with friction.
york
Messages
10
Reaction score
0
Poster has been reminded to show their work on schoolwork problems
Homework Statement
Hey everyone, i run across this quastion and i don't know hot to find the min and max of a
Relevant Equations
Fk = miu*N
Body A rests on a inclined plane of body B . the angle of slope is α , the coefficient of friction between the two bodies is μ . Body A does not slip on body B because we accelerate body B with a. What is the minimum and maximum acceleration required for body A not to slip? What will be the results if the slope angle α is 0? What will be the results if the slope angle α is 90°?
 

Attachments

  • 1635990376551.jpg
    1635990376551.jpg
    27.8 KB · Views: 140
Physics news on Phys.org
Per forum rules, you must show some attempt.
 
you right, sorry.
this is what i did, but i got a expression for a but i don't know how to find the min and max
 

Attachments

  • 1636001926493.jpg
    1636001926493.jpg
    59.3 KB · Views: 128
york said:
you right, sorry.
this is what i did, but i got a expression for a but i don't know how to find the min and max
I disagree with your first equation ("N+..."), and with the RHS of the third one. In each case, it's the coefficient of the a term I question.

Re min and max, what may happen if a is too small? What if a is too large?
 
haruspex said:
I disagree with your first equation ("N+..."), and with the RHS of the third one. In each case, it's the coefficient of the a term I question.

Re min and max, what may happen if a is too small? What if a is too large?
if a is too amall the block A will slide down, and if a is too large i think the block will severed from the plane backward
 
york said:
the block will severed from the plane backward
Sorry, I don't know what you mean by that.

What about the errors in the equations? Please explain how you get those terms.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top