An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are widely used to move heavy loads over vertical obstacles; examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.Moving an object up an inclined plane requires less force than lifting it straight up, at a cost of an increase in the distance moved. The mechanical advantage of an inclined plane, the factor by which the force is reduced, is equal to the ratio of the length of the sloped surface to the height it spans. Due to conservation of energy, the same amount of mechanical energy (work) is required to lift a given object by a given vertical distance, disregarding losses from friction, but the inclined plane allows the same work to be done with a smaller force exerted over a greater distance.The angle of friction, also sometimes called the angle of repose, is the maximum angle at which a load can rest motionless on an inclined plane due to friction, without sliding down. This angle is equal to the arctangent of the coefficient of static friction μs between the surfaces.Two other simple machines are often considered to be derived from the inclined plane. The wedge can be considered a moving inclined plane or two inclined planes connected at the base. The screw consists of a narrow inclined plane wrapped around a cylinder.The term may also refer to a specific implementation; a straight ramp cut into a steep hillside for transporting goods up and down the hill. It may include cars on rails or pulled up by a cable system; a funicular or cable railway, such as the Johnstown Inclined Plane.
Hello. I want to ask for advice. I know I probably won't understand it anyway, but maybe some information will help me. I did not find a solution to this problem on the Internet, which in itself I do not understand. We moved the cabinet and I can't calculate how much the weight on the opposite...
I had to look this up; will need to read on it.
from my research,
https://byjus.com/question-answer/the-equation-of-straight-line-equally-inclined-to-the-axes-and-equidistant-from-the-points-1-2-and-3-4-is-ax-by-c-0-where/
...
I have noted that at equally inclined; the slope value is ##1##...
Hello PhysicsForums!
Here is my attempt at a solution for the problem stated above:
Where m1 and m2 are the masses
Where Ff1 and Ff2 are friction for each mass
Where a1 and a2 is the resulting acceleration
Where S is the fore of the wire (threadforce)
Where FN is the normal force
The answear...
I want to use the Lagrangian approach to find the equation of motion for a mass sliding down a frictionless inclined plane. I call the length of the incline a and the angle that the incline makes with the horizontal b. Then the mass has kinetic energy 1/2m(da/dt)2 and the potential energy should...
The virtual displacement should be given by
$$
\delta\vec{r} = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ \end{pmatrix} \delta s
$$
where ##\delta s## is a displacement parallel to the plane. The relevant force should be the gravitational force, as given above. Thus, the equations of...
a = 9.8*sin(25*pi/180)=>a=4.1417 m/s^2
vf^2=vi^2+2*a*s=>vf=sqrt(0^2+2*4.1417*3)=>vf=4.9850 m/s
Meanwhile the correct answer is:
(vf+vi)/2=>(vf+0)/2=2=>vf=4 m/s
Why is my answer wrong? It seems that the acceleration is what is wrong, but I don't understand why.
For part (c) of this problem,
My working is
However, the tricky part is to find theta. I tried to draw the situation so that I could find theta:
It appears that theta = 90 degrees. However, this does not seem to be correct. Does anybody please know how to correctly find theta in terms of...
I was looking at an example of fluid mechanics and I don't understand this.
Statement figures:
CONTINUITY EQUATION
$$\left. \dfrac{dm}{dt}\right]_{MC}=(\dot{m}_2+\dot{m}_3)-\dot{m}_1=0$$
$$\dot{m}_1=\dot{m}_2+\dot{m}_3$$
$$\rho c_1A_1=\rho c_2A_2+\rho c_3A_3$$
$$\rho c_1 h1=\rho c_2 a1+\rho...
So far I have only been able to come up with an equation for the flow (Q) using the orifice equation through the inclined area and thus not dependent on the angle.
Can someone help me with an expression for this?
So i am tried to conserve momentum and use conservation of mechanical energy but won't there be psuedo force acting on the block if i am solving from non inertial frame ?. If i ignore the pseudo force and simply use C.O.M.E and include the K.E of the wedge and solve normally i do get the...
This is a homework problem of my grand daughter. The question is to find out the conditions of an object M on a slope with angle shown and applied force "F". I find there are 3 conditions, sliding up, sliding down and not moving. This is my work. I just want to get comments on my work:
At the...
I was thinking about how various objects would slide down on an inclined plane, and I just couldn't figure this problem out.
So let's say I have this screw or cone on its side, on an inclined plane. If friction exists, what would the motion of the screw be as it slides down the inclined plane...
Can somebody help me to solve this problem and guide? I need to calculate minimum force (F) (Newtons or kilograms) is required to pull down object (K1) to (K2), or to hold it in position. Angle between (K1) and (K2) = 50 degrees. Using mounting points (P1) and (P2). (K1) mass = 3.5 ton, (A)...
Suppose a square lattice. The planes are such as the image below:
I light wave incides perpendicular to the square lattice.
The first maximum occurs for bragg angle (angle with the plane (griding angle) as ##\theta_B = 30°## (blue/green), green/blue in the figure).
The angle that the...
When the platform moves with constant acceleration, the equation of Newton's 2nd law of motion is
Forward force - W sin 30o = m.a
Forward force = m (a + g sin 30o) ⇒ apparent gravity = a + g sin 30oFinal period of pendulum = ##\sqrt{\frac{g}{a+g \sin 30^{0}}} \times 2 = 2.38 s##
Is this...
The best I could do was draw a forces diagram. I know that friction would be working up when the block is on the point of slipping down the plane and friction will be acting down the slope against the direction of motion when the block is on the point of slipping up the slope. (not even sure if...
hey i would like to understand something, i solve this question but i don't understand why my answer is right, first of all we learn that in problems like this we need to disassemble into components the mg and that what i try to do here but i didnt get the right answer so then i try to do same...
When we take the x-axis parallel to incline surface its clear that the horizontal component of weight is causing the block to come down but when we take the standard orientation its not so clear to me. Is horizontal component of ##F_N## causing the block to come down?
<Moderator's note: Use of...
If on a flat ground, we exert a force F to move forward, then we go to an incline plane of theta degrees. Why wouldn't the force F2 to move up the incline plane with respect to ground be F2*cos(theta) = F --> F2 = F/cos(theta) disregarding the effects of gravity?
For lower half ,$$Fnet=-\mu F_N+mg\sin \phi$$
For upper half,
$$v^2=u^2+2as$$ (s is half of the total slant distance)
$$v^2=0+2\frac{mg\sin \phi}ms$$
$$v=\sqrt{2g\sin \phi s}$$
again for lower half,
$$v^2=u^2+2as$$
$$0=2g\sin \phi s+2\frac{-\mu F_N+mg\sin \phi}ms$$
$$\mu=\frac{2gm\sin...
1) By the Work-Energy Theorem, ##W=K_f-K_i=\frac{1}{2}I_{0}\omega^2=\frac{L^2}{2I_0}.##
2) By assuming that the initial length of the spring is ##0##, calling its final length ##S## and ##T## the tension in the rope connecting the pulley and mass ##m_p## I have: ##\begin{cases}(kS-T)r=0\\ m_p...
1. ##-f_k\cos\theta-T\cos\theta+F_n\cos\alpha=m_2a_x##
2. ##f_k\sin\theta+T\sin\theta+F_n\sin\alpha-m_2g=-m_2a_y##
3. ##T-m_1g=m_1a_y##
I am unable to get anywhere. There are accelerations in x , y directions.
I need the value of acceleration. Then I can simply use ##s=ut+\frac12at^2##
Body A rests on a inclined plane of body B . the angle of slope is α , the coefficient of friction between the two bodies is μ . Body A does not slip on body B because we accelerate body B with a. What is the minimum and maximum acceleration required for body A not to slip? What will be the...
It's the body. So there's friction on that plane and there's tension also.
$$L=\frac{1}{2}m_1\dot{x}^2+\frac{1}{2}m_2\dot{x}^2-m_2g(l-x)-m_1gx\sin\theta$$
$$f=\mu N=-\mu m_1 g\dot{x}\cos\theta$$
I had found the frictional force's equation from [the...
The acceleration and velocity of a body rolling down without slipping on a frictionless inclined plane are given by
$$
a=\dfrac{mg\sin \theta }{m+\dfrac{I}{r^{2}}}=\dfrac{g\sin \theta }{1+\dfrac{K^{2}}{r^{2}}} \cdots(1)
$$
$$...
(I drew motion in the opposite direction so the object would rotate trigonometrically but it should be the same thing)
I have just finished the Kinetic Energy and Work chapter in my course and this is the last problem from the problem set. I have not worked many problems with the Work-Kinetic...
First I calculated the forces that were working against mass B.
m(A)g sin 30 + μm(A)g cos 30 = 12.86 N
The force working with mass B is
m(B)g = 9.8m(B)
I thought I could solve for B using F=ma where 12.86 N = (2kg+m(B))*(0.58), but of course, 12.86 N is just the force required to make the...
I’m pretty sure that the force on the sphere by the wall and plane has to equal mg so the sum of the normal force is steered by the wall and plane has to equal mg. I’m not sure where to go after this. Is mg the answer or is there something I’m missing?Here is Fig: 4-31:
I HAVE NO IDEA HOW TO START.ONLY THINGS I KNOW ARE WHAT I RERAD ON THIS THRED.
https://www.physicsforums.com/threads/equilibrium-of-a-stiff-plate-on-inclined-planes.947601/I can't continue from there. There are also questions where α=β, α+β=45 and where α=45,β=60.How to make use of the fact...
I apologize if this is the wrong area to post this in, I've never posted on thisforum before.
I'm trying to form a FBD of a mechanism that uses linear motion to actuate a pin in a transverse direction. I've attached the general idea in a picture where the pin is free to move up and down. In...
In my textbook, it is stated that "if an object elastically hit an frictionless inclined surface with angle between the vector of initial velocity and an imaginary line that is perpendicular to the surface ##\alpha##,then the angle between the line and final velocity vector will also be...
ma = mg * sinα - fmg * cosα
a = g (sinα-f * cosα)
v = g*t(sinα - f * cosα)
14.7 = 10 * 2 (sin60 - f * cos60)
f = 0.26
Can someone please check if my solution is correct? I'd really appreciate that.
Hi! I have a question about inclined planes. In the diagram I attached, you can see that, with or without friction, mass does not affect the acceleration of the block. However, in my experience, the more people I put on my sled, the faster it goes. Why is this?
This image was provided, I've completed the first part of the question and got a = 4.8m/s^2 as well as T1= 24.5N and T2=34.3N. not sure about my answers though. also I don't understand the mass in static equilibrium part, can anyone explain how to solve that? Thanks.
a) When the system is in motion for the first time, the force causing ##M## to move is contact force with ##m## so:
$$\Sigma F=M.a$$
$$N \sin \alpha=M.a$$
$$mg \cos \alpha \sin \alpha =M.a$$
$$a=\frac{mg \cos \alpha \sin \alpha}{M}$$
Is that correct?
b) Is acceleration of ##m## the same as...
Summary:: Please see the picture below
Let say:
##W_1## is weight of ##m_1##
##W_2## is weight of ##m_2##
##f_1## is friction on ##m_1##
##f_2## is friction on ##m_2##
I want to find the acceleration of the system. Since I don't know in which direction they will move, I just assume ##m_1##...
Hi,
I'm struggling to start this exercice, where I have an inclined air hockey table with an angle alpha.
They gave me this chronophotography (this is online) saying that the ratio is 1:1
I really don't know how to proceed since this is online and I'm thinking if I measure this with a ruler...
Hi,
I'm missing something really stupid here...
The problem is the usual one with a block sliding down (or moving up, it should be the same) a frictionless inclined plane,which itself is free to move on a orizontal frictionless surface.
These problems are usually solved stating that only...
Question diagram, attempt at solution below
I need to cancel some of the terms in the moment equation but a not sure which ones to start with. I don’t know μ so can not calculate FA, so should probably substitute FA = RB2.
Hello there, I have a question regarding this problem. I have no problem with part A. However, in part B, my solution manual states that the hollow cylinder will reach the bottom last. Why is it? I mean shouldn't the solid cylinder and the hollow one reach the bottom at the same time? you know...