94JZA80
- 122
- 2
I Like Pi said:hey! Thank you so much! It makes a lot of sense! would this be the case any time you have same trig = same trig, you would cancel it out? so if tan(x) = tan(x), x = x and you would solve? Don't you have to do the inverse to get rid of it
again, i thank you dearly!
actually, now that you put it that way, i guess i can't definitively that if sin A = sin B, then A = B. for example, i can think of an instance in which sin A = sin B, but A != B...specifically, sin pi = sin 2pi = 0, but clearly pi != 2pi. in fact, sin pi = sin 2pi = sin 3pi = sin 4pi = sin npi, where n is any real integer, yet clearly each of these angles is unique and unequal to any other angle whose sine is also 0. perhaps tiny-tim could shed some light on this...i don't want to dole out false information if i can help it.
*EDIT* - it appears tiny-tim has shed some light on the subject, and he mentioned just what i was getting at above - that A does not necessarily equal B just b/c sin A = sin B. in fact, now that i think about it, sin & cos are operators just like addition and subraction, so you are correct that the inverse sin operation must be performed to both sides of an equation in order to rid one side of its sin operator.
Last edited:
how long does it take to draw a wavy line?