(adsbygoogle = window.adsbygoogle || []).push({}); Mathematical Derivation of Significant Figure "Rules"

Let's say I have a scale which can accurately read weights out to ten-thousandths of a gram so it might read 1.0005 g or 0.0005 grams ... why is it that the first reading has 5 significant figures and the second has only 1? Same instrument ... so how is it less precise just because the item weighs less? If I want to add two measurements together from the same scale ... say 0.0056 and 1.2345 --- why do I have to make it a two digit number? Why does that cause me to lose precision?

Please do not tell me how to apply the "rules" for significant figures -- I can read the tables in my chemistry/physics books just fine. I am asking how the rule is derived ... everywhere I've asked, I've had people saying "well leading zeroes aren't significant" ... I know this, and like a good monkey can apply the rules without a problem -- but I want to know why they aren't "significant".

I want an explanation centered around arithmetic of numbers in the decimal representation system -- something explaining why precision is lost because of leading zeros ... this is why I put it into the math section ... I figure this is more of a number theoretic question than anything else...

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematical Derivation of Significant Figure Rules

**Physics Forums | Science Articles, Homework Help, Discussion**