High School Matrix Exponential: Researching Origins & Applications

Click For Summary
The discussion focuses on researching the origins and applications of the matrix exponential, particularly in relation to quantum physics and differential equations. Participants are seeking historical context, specifically the first usage of the matrix exponential technique, which is believed to be linked to Lie theory. References to key texts, such as Engel and Nagel's work on one-parameter semigroups and Stillwell's Naive Lie Theory, are provided to aid in understanding the development of the exponential function. The conversation highlights that the exponential function's connection to differential equations has roots in the work of mathematicians like Euler and Hamilton. Overall, the thread emphasizes the importance of historical mathematical developments in understanding current applications.
lekh2003
Gold Member
Messages
539
Reaction score
342
I am conducting research into the matrix exponential, and I would like to discuss the mathematical development of the exponential, and eventually some applications in terms of quantum physics.

Currently, my problem is tracking down the original usage of this technique. I am trying to find a field of mathematics where it was first used, or perhaps an article in a journal that discusses the creation of the technique from the 19th century or so. I have found many applications, such as with differential equations, but no discussion of the origins of the methodology.

Can anyone help me out?
 
Physics news on Phys.org
I believe it originated from within Lie theory. Maybe @fresh_42 knows?
 
You can find a nice account of this in: Engel and Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.

Specifically, look at the contributed Chapter VII by Hahn and Perazzoli, A Brief History of the Exponential Function. (The book itself is at a graduate level, but this chapter starts before that.)
 
  • Like
Likes lekh2003
S.G. Janssens said:
You can find a nice account of this in: Engel and Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.

Specifically, look at the contributed Chapter VII by Hahn and Perazzoli, A Brief History of the Exponential Function. (The book itself is at a graduate level, but this chapter starts before that.)
Thank you so much! I'll read through them.
 
  • Like
Likes S.G. Janssens
I have no idea what you mean by
lekh2003 said:
I have found many applications, such as with differential equations, but no discussion of the origins of the methodology.
The exponential function is directly related to solutions of differential equations, including Lie theory. So we get back to Euler and Lagrange. It is the natural connection between tangent space (differential equations) and manifolds (solution space). Your question sounds to me as if you asked who it was who used an ansatz ##y=ae^{bx}## to solve a differential equation for the first time. My guess is Euler.
 
The last couple pages of chapter 4 (i.e. section 4.7) of Stillwell's Naive Lie Theory would be of interest here.

It starts by noting that "the first person to extend the exponential function to noncommuting objects was Hamilton who applied it to quaternions almost as soon as he discovered them in 1843." (Note the matrix representation of quaternions was figured out by Cayley in 1858.)
 
Last edited:
  • Like
Likes lekh2003

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K