# Matrix representation of function composition

Am I on the right path here?

1. Homework Statement

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
ii. Compose the two linear transformations and show the matrix that represents that composition.

2. The attempt at a solution

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
i. ##T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}##
##x =\begin{bmatrix}-1\\1\end{bmatrix}+y\begin{bmatrix}0\\1 \end{bmatrix}##
##\begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}##
##T_{a}## = Linear transformation.

##T_{b} \begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}x+y \\ x -y \end{bmatrix}##
##x \begin{bmatrix}1\\1 \end{bmatrix} + y \begin{bmatrix}1\\-1 \end{bmatrix} = \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix}x\\y \end{bmatrix}##
##T_{b}## = Linear transformation.

ii. Compose the two linear transformations and show the matrix that represents that composition.
##T_{a} {\circ} T_{b} = \left[T_{a}\right]\left[T_{e}\right] = \begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix}##
##= \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix}##

andrewkirk
Homework Helper
Gold Member
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}$$

Sociomath
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}$$

##\left[T_{a}\right]\left[T_{b}\right] = \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}##

andrewkirk
$$(T_a\circ T_b)\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}$$