• Support PF! Buy your school textbooks, materials and every day products Here!

Matrix representation of function composition

  • Thread starter Sociomath
  • Start date
  • #1
9
0
Am I on the right path here?

1. Homework Statement

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
ii. Compose the two linear transformations and show the matrix that represents that composition.

2. The attempt at a solution

i. Prove that ##T_{a}## and ##T_{b}## are linear transformations.
i. ##T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}##
##x =\begin{bmatrix}-1\\1\end{bmatrix}+y\begin{bmatrix}0\\1 \end{bmatrix}##
##\begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}##
##T_{a}## = Linear transformation.

##T_{b} \begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}x+y \\ x -y \end{bmatrix}##
##x \begin{bmatrix}1\\1 \end{bmatrix} + y \begin{bmatrix}1\\-1 \end{bmatrix} = \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix}x\\y \end{bmatrix}##
##T_{b}## = Linear transformation.

ii. Compose the two linear transformations and show the matrix that represents that composition.
##T_{a} {\circ} T_{b} = \left[T_{a}\right]\left[T_{e}\right] = \begin{bmatrix}-1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix}1 & 1 \\ 1 & -1 \end{bmatrix}##
##= \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix}##

Thanks in advance.
 

Answers and Replies

  • #2
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
3,792
1,390
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$
T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}
$$
 
  • #3
9
0
That looks correct. However, from the way the question is written, they expect you to not just produce the matrix but also state the the transformation in the same form as that in which the original two were given, ie this form
$$
T_{a} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}-x \\ x+y\end{bmatrix}
$$
##\left[T_{a}\right]\left[T_{b}\right] = \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}##
 
  • #4
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
3,792
1,390
##\left[T_{a}\right]\left[T_{b}\right] = \begin{bmatrix}-1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}##
I wouldn't write it like that, because ##[T_a]##is the matrix representation of the linear operator ##T_a##, rather than the linear transformation itself. The transformation is ##T_a\circ T_b##. So writing it the same way as that in which ##T_a## and ##T_b## were presented would be
$$(T_a\circ T_b)\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}-x -y\\ 2x \end{bmatrix}$$
 

Related Threads on Matrix representation of function composition

  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
9
Views
3K
  • Last Post
Replies
3
Views
5K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
4
Views
829
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
0
Views
1K
Top