MHB Max Horizontal Displacement of Projectile and its Velocity at T

AI Thread Summary
The equations for the projectile's motion are defined as x = v_0 cos(α_0) t and y = y_0 + v_0 sin(α_0) t - (1/2) gt², where v_0 is the initial speed, α_0 is the launch angle, and g is the acceleration due to gravity. The maximum horizontal displacement of the projectile, when it hits the ground, is given by the formula x_max = v_0² / (g tan(α_0)). At the time T when the projectile reaches the ground, the angle between the initial velocity vector and the velocity vector at T is π/2. Additionally, the optimal launch angle for maximum horizontal range can be calculated as α_0 = arctan(v_0 / √(v_0² + 2gy_0)). This analysis provides essential insights into projectile motion dynamics.
Theia
Messages
121
Reaction score
1
Let $$x = v_0\cos \alpha _0 t$$ and $$y = y_0 + v_0 \sin \alpha _0 t - \tfrac{1}{2} gt^2$$, where

  • $$v_0$$ is speed at time $$t = 0$$,
  • $$\alpha _0$$ is the angle between positive $$x$$-axis and initial velocity vector ($$\alpha _0 \in (0, \pi/2)$$),
  • $$t$$ time in seconds,
  • $$y_0 >0$$ the $$y$$ coordinate at time $$t=0$$,
  • $$g$$ acceleration due the gravity.

Let $$T$$ be the time when the projectile hits positive $$x$$-axis (i.e. the ground). Find the maximum horizontal displacement of the projectile and show that angle between initial velocity vector and velocity vector at time $$T$$ is $$\pi/2$$.
 
Mathematics news on Phys.org
$x_{max} = \dfrac{v_0^2}{g\tan{\alpha_0}}$

(bonus info that can be determined in working this problem) ... the value of $\alpha_0$ that yields a maximum horizontal range is $\alpha_0 = \arctan\left(\dfrac{v_0}{\sqrt{v_0^2 + 2gy_0}}\right)$

let $a = \alpha_0$, initial launch angle (too lazy to type out the Latex)

$b$ = final impact angle at time $T$$T=\dfrac{x}{v_0\cos{a}}$ substitute this expression for $T$ into the equation for $y$. Note $y(T)=0$

$0=y_0 + x\tan{a} - \dfrac{g}{2v_0^2} \cdot x^2\sec^2{a}$

derivative w/respect to $a$ ...

$0 = x\sec^2{a} + \tan{a} \cdot \dfrac{dx}{da} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}+x\sec^2{a} \cdot \dfrac{dx}{da} \right)$

when $x$ is a maximum, $\dfrac{dx}{da} = 0$ ...

$0 = x\sec^2{a} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}\right)$

$0 = x\sec^2{a}\bigg[1 - \dfrac{g}{v_0^2} \left(x \tan{a}\right) \bigg]$

$x\sec^2{a} \ne 0 \implies x = \dfrac{v_0^2}{g\tan{a}} \implies T = \dfrac{v_0}{g\sin{a}}$

$v_{fx} = v_0\cos{a}$

$v_{fy} = v_0\sin{a} - gT = -v_0 \cdot \dfrac{\cos^2{a}}{\sin{a}}$

$\tan{b} = \dfrac{v_{fy}}{v_{fx}} = -\cot{a}$

$\tan{b} \cdot \tan{a} = -\cot{a} \cdot \tan{a} = -1 \implies a \perp b$
 
Last edited by a moderator:
Thank you for your solution! ^^
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top