MHB Max Horizontal Displacement of Projectile and its Velocity at T

Theia
Messages
121
Reaction score
1
Let $$x = v_0\cos \alpha _0 t$$ and $$y = y_0 + v_0 \sin \alpha _0 t - \tfrac{1}{2} gt^2$$, where

  • $$v_0$$ is speed at time $$t = 0$$,
  • $$\alpha _0$$ is the angle between positive $$x$$-axis and initial velocity vector ($$\alpha _0 \in (0, \pi/2)$$),
  • $$t$$ time in seconds,
  • $$y_0 >0$$ the $$y$$ coordinate at time $$t=0$$,
  • $$g$$ acceleration due the gravity.

Let $$T$$ be the time when the projectile hits positive $$x$$-axis (i.e. the ground). Find the maximum horizontal displacement of the projectile and show that angle between initial velocity vector and velocity vector at time $$T$$ is $$\pi/2$$.
 
Mathematics news on Phys.org
$x_{max} = \dfrac{v_0^2}{g\tan{\alpha_0}}$

(bonus info that can be determined in working this problem) ... the value of $\alpha_0$ that yields a maximum horizontal range is $\alpha_0 = \arctan\left(\dfrac{v_0}{\sqrt{v_0^2 + 2gy_0}}\right)$

let $a = \alpha_0$, initial launch angle (too lazy to type out the Latex)

$b$ = final impact angle at time $T$$T=\dfrac{x}{v_0\cos{a}}$ substitute this expression for $T$ into the equation for $y$. Note $y(T)=0$

$0=y_0 + x\tan{a} - \dfrac{g}{2v_0^2} \cdot x^2\sec^2{a}$

derivative w/respect to $a$ ...

$0 = x\sec^2{a} + \tan{a} \cdot \dfrac{dx}{da} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}+x\sec^2{a} \cdot \dfrac{dx}{da} \right)$

when $x$ is a maximum, $\dfrac{dx}{da} = 0$ ...

$0 = x\sec^2{a} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}\right)$

$0 = x\sec^2{a}\bigg[1 - \dfrac{g}{v_0^2} \left(x \tan{a}\right) \bigg]$

$x\sec^2{a} \ne 0 \implies x = \dfrac{v_0^2}{g\tan{a}} \implies T = \dfrac{v_0}{g\sin{a}}$

$v_{fx} = v_0\cos{a}$

$v_{fy} = v_0\sin{a} - gT = -v_0 \cdot \dfrac{\cos^2{a}}{\sin{a}}$

$\tan{b} = \dfrac{v_{fy}}{v_{fx}} = -\cot{a}$

$\tan{b} \cdot \tan{a} = -\cot{a} \cdot \tan{a} = -1 \implies a \perp b$
 
Last edited by a moderator:
Thank you for your solution! ^^
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top