MHB Max Horizontal Displacement of Projectile and its Velocity at T

Click For Summary
SUMMARY

The maximum horizontal displacement of a projectile is calculated using the formula $$x_{max} = \dfrac{v_0^2}{g\tan{\alpha_0}}$$, where $$v_0$$ is the initial speed, $$g$$ is the acceleration due to gravity, and $$\alpha_0$$ is the launch angle. At the time $$T$$ when the projectile hits the ground, the angle between the initial velocity vector and the velocity vector is confirmed to be $$\pi/2$$. Additionally, the optimal angle for achieving maximum horizontal range is determined to be $$\alpha_0 = \arctan\left(\dfrac{v_0}{\sqrt{v_0^2 + 2gy_0}}\right).

PREREQUISITES
  • Understanding of projectile motion equations
  • Knowledge of trigonometric functions and their applications
  • Familiarity with the concepts of initial velocity and acceleration due to gravity
  • Basic calculus for deriving maximum values
NEXT STEPS
  • Study the derivation of projectile motion equations in detail
  • Learn about the impact of different launch angles on projectile range
  • Explore the application of calculus in optimizing projectile trajectories
  • Investigate real-world applications of projectile motion in physics and engineering
USEFUL FOR

Students and professionals in physics, engineering, and mathematics who are interested in understanding projectile motion and optimizing trajectories for various applications.

Theia
Messages
121
Reaction score
1
Let $$x = v_0\cos \alpha _0 t$$ and $$y = y_0 + v_0 \sin \alpha _0 t - \tfrac{1}{2} gt^2$$, where

  • $$v_0$$ is speed at time $$t = 0$$,
  • $$\alpha _0$$ is the angle between positive $$x$$-axis and initial velocity vector ($$\alpha _0 \in (0, \pi/2)$$),
  • $$t$$ time in seconds,
  • $$y_0 >0$$ the $$y$$ coordinate at time $$t=0$$,
  • $$g$$ acceleration due the gravity.

Let $$T$$ be the time when the projectile hits positive $$x$$-axis (i.e. the ground). Find the maximum horizontal displacement of the projectile and show that angle between initial velocity vector and velocity vector at time $$T$$ is $$\pi/2$$.
 
Physics news on Phys.org
$x_{max} = \dfrac{v_0^2}{g\tan{\alpha_0}}$

(bonus info that can be determined in working this problem) ... the value of $\alpha_0$ that yields a maximum horizontal range is $\alpha_0 = \arctan\left(\dfrac{v_0}{\sqrt{v_0^2 + 2gy_0}}\right)$

let $a = \alpha_0$, initial launch angle (too lazy to type out the Latex)

$b$ = final impact angle at time $T$$T=\dfrac{x}{v_0\cos{a}}$ substitute this expression for $T$ into the equation for $y$. Note $y(T)=0$

$0=y_0 + x\tan{a} - \dfrac{g}{2v_0^2} \cdot x^2\sec^2{a}$

derivative w/respect to $a$ ...

$0 = x\sec^2{a} + \tan{a} \cdot \dfrac{dx}{da} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}+x\sec^2{a} \cdot \dfrac{dx}{da} \right)$

when $x$ is a maximum, $\dfrac{dx}{da} = 0$ ...

$0 = x\sec^2{a} - \dfrac{g}{v_0^2} \left(x^2 \sec^2{a}\tan{a}\right)$

$0 = x\sec^2{a}\bigg[1 - \dfrac{g}{v_0^2} \left(x \tan{a}\right) \bigg]$

$x\sec^2{a} \ne 0 \implies x = \dfrac{v_0^2}{g\tan{a}} \implies T = \dfrac{v_0}{g\sin{a}}$

$v_{fx} = v_0\cos{a}$

$v_{fy} = v_0\sin{a} - gT = -v_0 \cdot \dfrac{\cos^2{a}}{\sin{a}}$

$\tan{b} = \dfrac{v_{fy}}{v_{fx}} = -\cot{a}$

$\tan{b} \cdot \tan{a} = -\cot{a} \cdot \tan{a} = -1 \implies a \perp b$
 
Last edited by a moderator:
Thank you for your solution! ^^
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
40
Views
2K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
7
Views
3K
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K