- #1
alejandrito29
- 150
- 0
In a exercise says:
Find max a min of [tex]f=-x^2+y^2[/tex] abaut the ellipse [tex]x^2+4y^2=4[/tex]
i tried [tex]-2x=\lambda 2x[/tex]
[tex] 2y=\lambda 8y [/tex]
[tex]x^2+4y^2-4=0[/tex]
then [tex]\lambda =-1[/tex] or [tex]\lambda =\frac{1}{4}[/tex] , but, ¿how i find [tex]x,y[/tex]?
Find max a min of [tex]f=-x^2+y^2[/tex] abaut the ellipse [tex]x^2+4y^2=4[/tex]
i tried [tex]-2x=\lambda 2x[/tex]
[tex] 2y=\lambda 8y [/tex]
[tex]x^2+4y^2-4=0[/tex]
then [tex]\lambda =-1[/tex] or [tex]\lambda =\frac{1}{4}[/tex] , but, ¿how i find [tex]x,y[/tex]?