Max Moment of resistance of a simply supported beam

Click For Summary
SUMMARY

The discussion centers on calculating the maximum moment of resistance for a simply supported beam subjected to a uniformly distributed load of 8 kN/m and a point load of 300 kN located 2 meters from one end. Participants clarify the correct application of moment equations, emphasizing that the reaction at the right end (RR) should be used in the moment equation since it is 6 meters from the left end. The maximum moment of resistance occurs at the point load, and proper construction of the shear and bending moment curves is essential for accurate calculations.

PREREQUISITES
  • Understanding of static equilibrium in beams
  • Knowledge of shear and bending moment diagrams
  • Familiarity with moment equations and their applications
  • Basic principles of structural analysis
NEXT STEPS
  • Study the derivation of shear and bending moment diagrams for beams
  • Learn about the calculation of reactions at supports in statically determinate beams
  • Explore the concept of maximum moment of resistance in structural engineering
  • Investigate the effects of different load configurations on beam performance
USEFUL FOR

Structural engineers, civil engineering students, and anyone involved in the analysis and design of beams under various loading conditions will benefit from this discussion.

Michael V
Messages
25
Reaction score
0

Homework Statement



A beam carries a uniformly distributed load, including its own weight, of 8 kN/m over its full length of 6 m. A point load of 300 kN is placed 2 metres from the one end of the beam which is simply supported.

Calculate the maximum moment of resistance for the beam if it occurs at the point load.

I'm getting confused with max bending moment and max moment of resistance, please my answer attached.
 

Attachments

  • max moment of resistance.jpg
    max moment of resistance.jpg
    29.2 KB · Views: 2,307
Physics news on Phys.org
Your moment equations are written backwards.

If you use the left end of the beam as your moment reference, you will find the reaction at the right end of the beam.

The reaction at RL should be greater than RR, since the point load is closer to the left end.
 
So for each bending moment, I must take the distance from the reference point to each acting force?
 
Well, yeah.

In your first moment equation, you wrote:

300 k * 2 + (8k * 6 * (6/2)) = RL * 6

The LHS is fine, but you are using the left end of the beam as the reference point. The RHS of the equation should be RR * 6, as RR, not RL, is located 6 meters from the left end.
 
Yeah, I see the mistake now. So that would also change the max moment of resistance then?
 
Once you have the beam statically determined, then you construct the shear curve. From the shear curve, you can construct the bending moment curve and find the maximum moment.
 
In the question they said that it occurs at the point load so isn't that where your shear curve (shear force diagram) cuts the axis?
 
yes.
 
So is this correct now?
 

Attachments

  • max moment of resistance.jpg
    max moment of resistance.jpg
    26.3 KB · Views: 4,337

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K