Max velocity of blocks after spring pushes them apart

AI Thread Summary
The discussion revolves around calculating the maximum velocities of two blocks after being pushed apart by a compressed spring. The spring has a force constant of 3.75 N/m and is compressed by 8.00 cm, with the blocks having masses of 0.250 kg and 0.490 kg. The maximum velocities are affected by varying coefficients of kinetic friction, with specific values provided for analysis. There is confusion regarding the calculated velocities, particularly for the 0.250 kg block, with participants questioning the accuracy of the results. The conversation emphasizes the importance of correctly applying the energy conservation equation to determine the velocities.
joedango
Messages
9
Reaction score
0

Homework Statement


A light spring of force constant 3.75 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.490 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume that the coefficient of static friction is greater than the coefficient of kinetic friction. Let the positive direction point to the right.

(a) For the 0.250 kg block:
At µk = 0.000, the maximum velocity is _____ m/s
At µk = 0.100, the maximum velocity is _____ m/s
At µk = 0.454, the maximum velocity is _____ m/s

(b) For the 0.490 kg block:
At µk = 0.000, the maximum velocity is _____ m/s
At µk = 0.100, the maximum velocity is _____ m/s
At µk = 0.454, the maximum velocity is _____ m/s

Homework Equations



1/2Kx^2=1/2mv^2+fd

The Attempt at a Solution


For µk = 0.000 and m = 0.250 kg, I get:
1/2(3.75)(0.08^2)=1/2(0.25)v^2 + 0
solving for v i get: v=0.309 and v=-0.31
since the 0.250 kg block is moving to the left the answer should be -0.31 m/s, but the answer is incorrect.
 
Physics news on Phys.org
a)
velocity of mass 0.49 is 0.23 m/s
velocity of mass 0.25 is 3.2 m/s
 
how did you obtain those answers? I don't think they're correct.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top