Maxima and Minima in calculus

Click For Summary
SUMMARY

The discussion focuses on proving that the radius of the right circular cylinder with the greatest curved surface area, inscribed in a cone, is half the radius of the cone. The formula for the curved surface area of the cylinder is derived as S = 2πr*(H(R - r)/R). By differentiating this expression with respect to r and setting the derivative to zero, it is established that r = R/2 maximizes the surface area. The second derivative test confirms that this value yields a maximum surface area.

PREREQUISITES
  • Understanding of calculus concepts such as differentiation and maxima/minima.
  • Familiarity with geometric properties of cones and cylinders.
  • Knowledge of the formulas for curved surface area of cylinders.
  • Ability to visualize geometric shapes in a coordinate system.
NEXT STEPS
  • Study the application of calculus in optimizing geometric shapes.
  • Learn about the properties of inscribed shapes in cones and other solids.
  • Explore advanced topics in differential calculus, particularly in relation to optimization problems.
  • Investigate the use of graphical methods to visualize and solve geometric optimization problems.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and geometry, as well as engineers and architects involved in design optimization of structures.

WMDhamnekar
MHB
Messages
378
Reaction score
30
Question: Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

Answer:

Let r and h be the radius and height of the right circular cylinder inscribed in a given cone of radius R and height H. Let S be the curved surface area of cylinder.

S = 2πr*h

h = H*(R – r)/R
( Would any Math help board member provide me the detailed explanation of the computation of height of right circular cylinder of greatest curved surface inscribed in a given cone with a figure (as far as possible) ?

So S = 2πr*H(R – r)/R

= $\frac{2πH}{R}(r*R – r^2)$

Differentiate w.r.t.r

$\frac{dS}{dr} = \frac{2πH}{R}(R – 2r)$

For maxima or minima

$\frac{dS}{dr} =0$

=> $\frac{2πH}{R}(R – 2r) = 0$

=> R – 2r = 0

=> R = 2r

=> $r = \frac{R}{2}$

$\frac{d^2S}{dr^2} = \frac{2πH}{R}*(0 – 2)= \frac{-4πH}{R }$(negative)

So for $r = \frac{R}{2},$ S is maximum.
 
Physics news on Phys.org
Draw a picture. From the side, a cone of radius R and height h looks like s triangle. I would set up a coordinate system with x-axis along the base, y-axis along the altitude, and origin at the center of the base. Then the peak is at (0, h) and one vertex is at (R, 0). The line between those two points, on the side of the cone, is given by y= -(h/R)x+ h. At x= r, y= -hr/R+ h= h(1- r/R).

The area of the curved side is $2\pi rh(1- r/R)$.
 
I drew a picture describing this question. Now, how can we prove $\frac{h}{H}=\frac{(R-r)}{R}$
1649742613490.png
 
Last edited:
The cone has height H and radius R. Set up a coordinate system so the origin is at the center of the base and the z axis passes through the vertex. Then the vertex is at (0, 0, H) and the x-axis passes through the cone at (R, 0, 0). The line through those two points, in the xz-plane, is given by $z= H\frac{R- x}{R}$.

Taking x= r, for the cylinder, we get $h= H\frac{R- r}{R}$ or, dividing both sides by H, $\frac{h}{H}= \frac{R- r}{R}$.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K