Archived Maximum Charge on a Capacitor, Help

Click For Summary
The discussion focuses on determining the time constant and maximum charge of a capacitor in a circuit with resistors R1 and R2. The time constant is calculated using the equivalent resistance of the parallel resistors, yielding tau = CR1R2/(R1+R2). For maximum charge, the voltage across R2 is derived as Vc = E(R2/(R1+R2)), leading to the expression for maximum charge as Qmax = CVc. Participants emphasize the importance of understanding the voltage divider effect in the circuit. The conversation highlights the application of Thevenin's theorem as a potential simplification for solving the problems.
ryeager
Messages
2
Reaction score
0
Hi, thanks in advance to all who help

a) Determine the time constant for charging the capacitor in the circuit given.
b) what is the maximum charge on the capacitor?
R1
______vvvv____________
| | |
| < |
E R2 > C
| | |
|______________|______|

E = emf and C is the capacitor, sorry for the poor illustration.

Mentor's edit: Here's a better illustration:
upload_2016-2-8_14-58-30.png


For a, I've determined the equivalent resistance of parallel resistors to be (1/R1 + 1/R2)^-1 = R1R2/(R1+R2), thus the time constant would be tau = CReq = CR1R2/(R1+R2)

For b) I have a feeling Qmax for the capacitor will be Qmax = CV where V is the voltage across R2 since R2 and C are parallel, but I can't figure out V across R2 in terms of E, R1, R2, C. Can anyone help? Thanks again.
 
Last edited by a moderator:
Physics news on Phys.org
ryeager said:
For a, I've determined the equivalent resistance of parallel resistors to be (1/R1 + 1/R2)^-1 = R1R2/(R1+R2), thus the time constant would be tau = CReq = CR1R2/(R1+R2)
I got the same result after solving with differential equations.
Let the time constant be T.
Current supplied by the source is,
I(t)=ET/(R1R2C)*(1-e-t/T)+(E*e-t/T)/R1
From this equation, it can be verified that at t=0, I=E/R1(capacitor acts as a short at t=0) and at t=∞, I=E/(R1+R2)..(capacitor acts as open circuit at t=∞).
ryeager said:
For b) I have a feeling Qmax for the capacitor will be Qmax = CV where V is the voltage across R2 since R2 and C are parallel, but I can't figure out V across R2 in terms of E, R1, R2, C.
In steady state, the capacitor will act as an open circuit. Hence, current will flow though the series combination of R1 and R2.
So, Voltage across C=Voltage across R2 in steady state= E*R2/(R1+R2)
Final charge on the capacitor=Q=CV= ECR2/(R1+R2).
 
  • Like
Likes Ronie Bayron and gracy
The above approach involves some mathematical calculations and a generalized expression for current I(t). Instead, I believe the best and simplest approach to solve these two questions a and b is Thevenin's theorem.
 
  • Like
Likes gracy
ryeager said:
Hi, thanks in advance to all who help

a) Determine the time constant for charging the capacitor in the circuit given.
b) what is the maximum charge on the capacitor?
R1
______vvvv____________
| | |
| < |
E R2 > C
| | |
|______________|______|

E = emf and C is the capacitor, sorry for the poor illustration.

Mentor's edit: Here's a better illustration:
View attachment 95530

For a, I've determined the equivalent resistance of parallel resistors to be (1/R1 + 1/R2)^-1 = R1R2/(R1+R2), thus the time constant would be tau = CReq = CR1R2/(R1+R2)

For b) I have a feeling Qmax for the capacitor will be Qmax = CV where V is the voltage across R2 since R2 and C are parallel, but I can't figure out V across R2 in terms of E, R1, R2, C. Can anyone help? Thanks again.
 
Why do you regard R1 and R2 as being in parallel?
When C is fully charged then the current through the capacitor is ?

Which makes the fial voltage across C ? ?Hence the max charge will be ? ? ?
 
Kenygreen said:
Why do you regard R1 and R2 as being in parallel?
When C is fully charged then the current through the capacitor is ?

Which makes the final voltage across C ? ?Hence the max charge will be ? ? ?
Are those your own queries or are you trying to give hints to the OP?
 
ryeager said:
Hi, thanks in advance to all who help

a) Determine the time constant for charging the capacitor in the circuit given.
b) what is the maximum charge on the capacitor?
R1
______vvvv____________
| | |
| < |
E R2 > C
| | |
|______________|______|

E = emf and C is the capacitor, sorry for the poor illustration.

Mentor's edit: Here's a better illustration:
View attachment 95530

For a, I've determined the equivalent resistance of parallel resistors to be (1/R1 + 1/R2)^-1 = R1R2/(R1+R2), thus the time constant would be tau = CReq = CR1R2/(R1+R2)

For b) I have a feeling Qmax for the capacitor will be Qmax = CV where V is the voltage across R2 since R2 and C are parallel, but I can't figure out V across R2 in terms of E, R1, R2, C. Can anyone help? Thanks again.
Vc=VR2 where R1 & R2 are voltage divider.
I = E/(R1+R2) and VR2=IR2, so Vc =E[R2/(R1+R2)]
 
Ronie Bayron said:
Vc=VR2 where R1 & R2 are voltage divider.
I = E/(R1+R2) and VR2=IR2, so Vc =E[R2/(R1+R2)]
Since C=Q/Vc, Q =C Vc, so the charge Q depends on the value of capacitance you put on your circuit and magnitude of Vc
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
824
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K