I Maximum impact parameter given effective potential

Click For Summary
The discussion revolves around understanding why higher particle energies lead to capture in gravitational interactions, contrary to the intuition that lower energies would result in capture due to insufficient energy to escape. The key point is that the condition for capture is defined by the effective potential, where the maximum effective potential must be less than or equal to the particle's energy (V_eff^max ≤ E). This relationship indicates that as energy increases, the impact parameter decreases, resulting in a smaller cross-section for capture. Additionally, higher energy correlates with increased angular momentum, which further influences the dynamics of capture. The explanation clarifies the misconception about energy and gravitational capture in classical mechanics.
stephen8686
Messages
42
Reaction score
5
This problem is from David Morin's classical mechanics textbook:
problem.PNG

I am having trouble with Part b. Here is the textbook's answer:
andswe.PNG


I do not understand why large particle energies lead to capture. I would think that smaller energies would lead to capture because the particle wouldn't have enough energy to escape the gravitational potential, whereas large energy particles could woosh past. If someone could explain why my intuition is wrong, that would be very helpful.
 
Physics news on Phys.org
How do you make out that larger energies lead to capture?
 
PeroK said:
How do you make out that larger energies lead to capture?
That's what the answer says, "The condition for capture is therefore ##V_{eff}^{max}\leq E## " That is the part of the answer that I don't understand
 
stephen8686 said:
That's what the answer says, "The condition for capture is therefore ##V_{eff}^{max}\leq E## " That is the part of the answer that I don't understand
That condition resolves into a smaller impact parameter and smaller cross section for capture for greater energy.
 
stephen8686 said:
That's what the answer says, "The condition for capture is therefore ##V_{eff}^{max}\leq E## " That is the part of the answer that I don't understand
That equation in itself is about the relationship between angular momentum and energy. But, angular momentum increases with energy if other factors are held constant, so it doesn't say what you are thinking it says.
 
Can someone here check my math? On an euc (electric unicycle), the motor has to exact the same amount of torque onto the wheel+tire that the rider exerts onto the euc, otherwise the frame would rotate (due to the motor exerting an equal in magnitude but opposite direction onto the frame than it does onto the wheel, a Newton third law like pair of torques). Choosing some arbitrary numbers: rider = 200 lb euc = 100 lb rider + euc = 300 lb tire radius = .83333 foot (10 inches) rider center...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
11K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K